참고문헌
- S. Banach, Sur les operations dans les ensembles abstraits et leur applications, Fund. Math. 3 (1922), 133-181.
- L. B. Ciric and S. B. Presic, On Presic type generalisation of Banach contraction principle, Acta Math. Univ. Comenian. 76 (2007), no. 2, 143-147.
- K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, 1985.
- M. Frechet, Sur quelques points du calcul fonctionnel, Rend. Circ. Mat. Palermo 22 (1906), 1-74. https://doi.org/10.1007/BF03018603
- R. George, K. P. Reshma, and R. Rajagopalan, A generalised fixed point theorem of Presic type in cone metric spaces and application to morkov process, Fixed Point Theory Appl. 2011 (2011), no. 85, 8 pages.
- L. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332 (2007), no. 2, 1468-1476. https://doi.org/10.1016/j.jmaa.2005.03.087
- G. Jungck, S. Radenovic, S. Radojevic, and V. Rakocevic, Common fixed point theorems for weakly compatible pairs on cone metric spaces, Fixed Point Theory Appl. 2009 (2009), Article ID 643840, 13 pages.
- M. S. Khan, M. Berzig, and B. Samet, Some convergence results for iterative sequences of Presic type and applications, Adv. Difference Equ. 2012 (2012), no. 38, 12 pages.
- M. S. Khan and M. Samanipour, Presic type extension in cone metric space, Int. J. Math. Anal. 7 (2013), no. 36, 1795-1802.
- D. R. Kurepa, Tableaux ramifies d'ensembles espaces pseudo-distancies, C. R. Acad. Sci. Paris 198 (1934), 1563-1565.
- D. R. Kurepa, Free power or width of some kinds of mathematical structure, Publ. Inst. Math. (Beograd) 42(56) (1987), 3-12.
- S. Lin, A common fixed point theorem in abstract spaces, Indian J. Pure Appl. Math. 18 (1987), no. 8, 685-690.
- N. V. Luong and N. X. Thuan, Some fixed point theorems of Presic-Ciric type, Acta Univ. Apulensis Math. Inform. 30 (2012), 237-249.
- S. K. Malhotra, S. Shukla, and R. Sen, A generalization of Banach contraction principle in ordered cone metric spaces, J. Adv. Math. Stud. 5 (2012), no. 2, 59-67.
- S. K. Malhotra, S. Shukla, and R. Sen, Some coincidence and common fixed point theorems in cone metric spaces, Bull. Math. Anal. Appl. 4 (2012), no. 2, 64-71.
- J. J. Nieto and R. R. Lopez, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equation, Order 22 (2005), no. 3, 223-239. https://doi.org/10.1007/s11083-005-9018-5
- M. Pacurar, Approximating common fixed points of Presic-Kannan type operators by a multi-step iterative method, An. St. Univ. Ovidius Constanta Ser. Mat. 17 (2009), no. 1, 153-168.
- M. Pacurar, A multi-step iterative method for approximating common fixed points of Presic- Rus type operators on metric spaces, Studia Univ. Babes-Bolyai Math. 55 (2010), no. 1, 149-162.
- M. Pacurar, Common fixed points for almost Presic type operators, Carpathian J. Math. 28 (2012), no. 1, 117-126.
- S. Presic, Sur la convergence des suites, C. R. Acad. Paris 260 (1965), 3828-3830.
- A. C. M. Ran and M. C. B. Reurings, A fixed point theorem in partially ordered sets and some application to matrix equations, Proc. Amer. Math. Soc. 132 (2004), no. 5, 1435-1443. https://doi.org/10.1090/S0002-9939-03-07220-4
- S. Rezapour and R. Halbarani, Some notes on the paper, Cone metric spaces and fixed point theorem of contractive mappings, J. Math. Anal. Appl. 345 (2008), no. 2, 719-724. https://doi.org/10.1016/j.jmaa.2008.04.049
- B. Rzepecki, On fixed point theorems of Maia type, Publ. Inst. Math. (Beograd) 28(42) (1980), 179-186.
- S. Shukla, Presic type results in 2-Banach spaces, Afr. Mat. 25 (2014), no. 4, 1043-1051. https://doi.org/10.1007/s13370-013-0174-2
- S. Shukla and B. Fisher, A generalization of Presic type mappings in metric-like spaces, J. Oper. 2013 (2013), Article ID 368501, 5 pages.
- S. Shukla and S. Radenovic, A generalization of Presic type mappings in 0-complete ordered partial metric spaces, Chinese J. Math. 2013 (2013), Article ID 859531, 8 pages.
- S. Shukla and R. Sen, Set-valued Presic-Reich type mappings in metric spaces, Rev. R. Acad. Cienc. Exactas, Fis. Nat. Ser, A. Mat. 108 (2014), no. 2, 431-440. https://doi.org/10.1007/s13398-012-0114-2
- S. Shukla, R. Sen, and S. Radenovic, Set-valued Presic type contraction in metric spaces, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.). http://dx.doi.org/10.2478/aicu-2014-0011.
- P. Zabreiko, K-metric and K-normed spaces: survey, Collect. Math. 48 (1997), no. 4-6, 825-859.