References
- A. de Acosta, Inequalities for B-valued random vectors with applications to the strong law of large numbers, Ann. Probab. 9 (1981), no. 1, 157-161. https://doi.org/10.1214/aop/1176994517
- S. E. Ahmed, R. Giuliano Antonini, and A. Volodin, On the rate of complete convergence for weighted sums of arrays of Banach space valued random elements with application to moving avurage processes, Statist. Probab. Lett. 58 (2002), no. 2, 185-194. https://doi.org/10.1016/S0167-7152(02)00126-8
- L. E. Baum and M. Katz, Convergence rates in the law of large numbers, Trans. Am. Math. Soc. 120 (1965), 108-123. https://doi.org/10.1090/S0002-9947-1965-0198524-1
- Y. S. Chow, On the rate of moment convergence of sample sums and extremes, Bull. Inst. Math. Acad. Sinica 16 (1988), no. 3, 177-201.
- A. Gut, Complete convergence for arrays, Period. Math. Hungar. 25 (1992), no. 1, 51-75. https://doi.org/10.1007/BF02454383
- P. L. Hsu and H. Robbins, Complete convergence and the law of large numbers, Proc. Nat. Acad. Sci. USA 33 (1947), 25-31. https://doi.org/10.1073/pnas.33.2.25
- T. C. Hu, D. Li, A. Rosalsky, and A. Volodin, On the rate of complete convergence for weighted sums of arrays of Banach space valued random elements, Theory Probab. Appl. 47 (2002), no. 3, 455-468.
- T. C. Hu, A. Rosalsky, D. Szynal, and A. Volodin, On complete convergence for arrays of rowwise independent random elements in Banach spaces, Stochastic Anal. Appl. 17 (1999), no. 6, 963-992. https://doi.org/10.1080/07362999908809645
- T. S. Kim and M. H. Ko, On the complete convergence of moving average process with Banach space valued random elements, J. Theoret. Probab. 21 (2008), no. 2, 431-436. https://doi.org/10.1007/s10959-007-0118-6
- T. S. Kim and M. H. Ko, Complete moment convergence of moving average processes under dependence assumptions, Statist. Probab. Lett. 78 (2008), no. 7, 839-846. https://doi.org/10.1016/j.spl.2007.09.009
- D. Li, M. B. Rao, T. F. Ting, and X. C. Wang, Complete convergence and almost sure convergence of weighted sums of random variables, J. Theoret. Probab. 8 (1995), no. 1, 49-76. https://doi.org/10.1007/BF02213454
- Y. X. Li and L. X. Zhang, Complete moment convergence of moving-average processes under dependence assumptions, Statist. Probab. Lett. 70 (2004), no. 3, 191-197. https://doi.org/10.1016/j.spl.2004.10.003
- H. Y. Liang, D. L. Li, and A. Rosalsky, Complete moment and integral convergence for sums of negatively associated random variables, Acta Math. Sin. (Engl. Ser.) 26 (2010), no. 3, 419-432. https://doi.org/10.1007/s10114-010-8177-5
- D. H. Qiu, T. C. Hu, M. O. Cabrera, and A. Volodin, Complete convergence for weighted sums of arrays of Banach-space-valued random elements, Lith. Math. J. 52 (2012), no. 3, 316-325. https://doi.org/10.1007/s10986-012-9175-3
- S. H. Sung, Complete convergence for weighted sums of arrays of rowwise independent B-valued random variables, Stochastic Anal. Appl. 15 (1997), no. 2, 255-267. https://doi.org/10.1080/07362999708809474
- S. H. Sung, Moment inequalities and complete moment convergence, J. Inequal. Appl. 2009 (2009), Article ID 271265, doi:10.1155/2009/271265.
- S. H. Sung and A. Volodin, A note on the rate of complete convergence for weighted sums of arrays of Banach space valued random elements, Stochastic Anal. Appl. 29 (2011), no. 2, 282-291. https://doi.org/10.1080/07362994.2011.548670
- D. C. Wang and C. Su, Moment complete convergence for sequences of B-valued iid random elements, Acta Math. Appl. Sin. 27 (2004), no. 3, 440-448.
- D. C. Wang and W. Zhao, Moment complete convergence for sums of a sequence of NA random variables, Appl. Math. J. Chinese Univ. Ser. A 21 (2006), no. 4, 445-450.
- X. Wang, M. B. Rao, and X. Yang, Convergence rates on strong laws of large numbers for arrays of rowwise independent elements, Stochastic Anal. Appl. 11 (1993), no. 1, 115-132. https://doi.org/10.1080/07362999308809305
- Y. F. Wu, Convergence properties of the maximal partial sums for arrays of rowwise NA random variables, Theory Probab. Appl. 56 (2012), no. 3, 527-535. https://doi.org/10.1137/S0040585X97985583
- L. X. Zhang, Complete convergence of moving average processes under dependence as-sumptions, Statist. Probab. Lett. 30 (1996), no. 2, 165-170. https://doi.org/10.1016/0167-7152(95)00215-4