DOI QR코드

DOI QR Code

Arrangement Design and Performance Evaluation for Multiple Wind Turbines of 10MW Class Floating Wave-Offshore Wind Hybrid Power Generation System

10MW급 부유식 파력-해상풍력 연계형 발전 시스템의 다수 풍력터빈 배치 설계 및 성능 평가

  • Park, Sewan (Offshore Plant Research Division, Korea Research Institute of Ships & Ocean Engineering) ;
  • Kim, Kyong-Hwan (Offshore Plant Research Division, Korea Research Institute of Ships & Ocean Engineering) ;
  • Lee, Kang-Su (Offshore Plant Research Division, Korea Research Institute of Ships & Ocean Engineering) ;
  • Park, Yeon-Seok (Department of Ocean Engineering, Mokpo National University) ;
  • Oh, Hyunseok (Machinery Technology Research Team, Korean Register) ;
  • Shin, Hyungki (Korea Institute of Energy Research) ;
  • Hong, Keyyong (Offshore Plant Research Division, Korea Research Institute of Ships & Ocean Engineering)
  • 박세완 (한국해양과학기술원 부설 선박해양플랜트연구소) ;
  • 김경환 (한국해양과학기술원 부설 선박해양플랜트연구소) ;
  • 이강수 (한국해양과학기술원 부설 선박해양플랜트연구소) ;
  • 박연석 (목포대학교 해양시스템공학과) ;
  • 오현석 (한국선급 기술본부연구소) ;
  • 신형기 (한국에너지기술연구원) ;
  • 홍기용 (한국해양과학기술원 부설 선박해양플랜트연구소)
  • Received : 2015.03.12
  • Accepted : 2015.04.22
  • Published : 2015.05.25

Abstract

In this study, an arrangement design process for multiple wind turbines, placed on the 10MW class floating wave-offshore wind hybrid power generation system, was presented, and the aerodynamic performance was evaluated by using a computational fluid dynamics. An arrangement design, which produces a maximum power in the site wind field, was found by using a commercial program, WindPRO, based on a blade element momentum theory, then the effect of wake interference on the system between multiple wind turbines was studied and evaluated by using ANSYS CFX.

본 연구에서는 10 MW급 부유식 파력-해상풍력 연계형 발전시스템에 설치되는 다수 풍력발전기의 배치 설계를 수행하고, 전산유체역학 해석기법을 통해 다수 풍력발전기의 성능을 평가하였다. 날개요소운동량이론을 기반으로 한 풍력발전 단지 설계용 프로그램 WindPRO를 이용하여, 발전시스템의 적지 환경 풍황조건에 대해 최대에너지를 생산할 수 있는 배치 설계를 도출하였고, ANSYS CFX를 이용하여 다수 풍력발전기간의 후류 간섭영향을 발전기 성능 측면에서 검토하여, 근거리 다수 풍력발전기간의 후류 간섭이 시스템에 미치는 영향을 평가하였다.

Keywords

References

  1. Benini, E. and Toffolo, A., 2002, "Optimal design of horizontal-axis wind turbines using blade-element theory and evolutionary computation", J. Solar Energy Engineering, Vol. 124, 357-363. https://doi.org/10.1115/1.1510868
  2. Butterfield, S., Musial, W., Jonkman, J., Sclavounos, P., and Wayman, L., 2005, "Engineering challenges for floating offshore wind turbines", Proc 2005 Copenhagen Offshore Wind Conf., Copenhagen, Oct., 26-28.
  3. Choi, N.-J., Nam, S.-H., Jeong, J.-H. and Kim, K.-C., 2011, "CFD Study on Aerodynamic Power Output of 6 MW Offshore Wind Farm According to the Wind Turbine Separation Distance", J. Korean Society of Marine Engineering, Vol. 35, No. 8, 1063-1069. https://doi.org/10.5916/jkosme.2011.35.8.1063
  4. Glauert, H., 1935, Aerodynamic theory, Julius Springer, Berlin, 169-360.
  5. Kang, T.-J., Lee, S.-W., Cho, J.-S. and Gyeong, N., 2008, "Aerodynamic Analysis of the NREL Phase VI Rotor using the CFD", J. Korean Society for Aeronautical & Space Sciences, Vol. 36, 315-320. https://doi.org/10.5139/JKSAS.2008.36.4.315
  6. Katic, I., Hojstrup, J. and Jensen, N.O., 1986, "A simple model for cluster efficiency", Proc European Wind Energy Association Conference and Exhibition, Rome, Oct. 7-9.
  7. Kim, J.-I. and Kim, W.-J., 2011, "Viscous flow analysis around a wind turbine blade with end plate and rake", J. Korean Society for Marine Environmental Engineering, Vol. 14, 273-279. https://doi.org/10.7846/JKOSMEE.2011.14.4.273
  8. Kim, K.-H., Lee, K.-S., Sohn, J.-M., Park, S., Choi, J.-S. and Hong, K., 2015, "Conceptual design of 10MW class floating wave-offshore wind hybrid power generation system", Proc 25th International Offshore and Polar Engineering Conf., Big Island, Jun., 21-26.
  9. Lee, J.H., Park S., Kim, D.H., Rhee, S.H. and Kim, M.-C., "Computational methods for performance analysis of horizontal axis tidal stream turbines", J. Applied Energy, Vol. 98, 512-523.
  10. Menter, F.R., 1994, "Two-equation eddy-viscosity turbulence models for engineering applications", AIAA Journal, Vol. 32, No. 8, 1598-1605. https://doi.org/10.2514/3.12149
  11. NRG Expert, 2011, Global Ocean Energy Report, Workshop on Tidal & Oil-Spill Modeling, NRG Expert, Ed. 1, 11-12.
  12. Park, S.W., Park, S. and Rhee, S.H., 2013, "Performance predictions of a horizontal axis tidal stream turbine considering the effects of blade deformation", Proc 3rd International Symposium on Marine Propulsors Conf., Tasmania, May 5-8.
  13. Rhie, C.M. and Chow, W.L., 1982, "A numerical study of the sturbulent flow past an isolated airfoil with trailing edge separation", AIAA Journal, Vol. 21, 1525-1532.
  14. Sanderse, B., 2009, "Aerodynamics of wind turbine wakes - literature review", Energy Research Centre of the Netherlands Technical Report, ECN-E-09-016.
  15. Sorensen, T., Thogersen, M.L., Nielsen, P., Grotzner, A. and Chun, S., 2008, "Adapting and calibration of existing wake models to meet the conditions inside offshore wind farms", EMS International A/S Report.
  16. Vermeer, L.J., Sorensen, J.N. and Crespo, A., 2003, "Wind turbine wake aerodynamics", J. Progress in Aerospace Sciences, Vol. 39, 467-510. https://doi.org/10.1016/S0376-0421(03)00078-2

Cited by

  1. Conceptual Design of Large Semi-submersible Platform for Wave-Offshore Wind Hybrid Power Generation vol.18, pp.3, 2015, https://doi.org/10.7846/JKOSMEE.2015.18.3.223
  2. Evaluation of a Grid System for Numerical Analysis of a Small Savonius Wind Turbine vol.27, pp.5, 2016, https://doi.org/10.7316/KHNES.2016.27.5.547
  3. Development of Unified SCADA System Based on IEC61850 in Wave-Offshore Wind Hybrid Power Generation System vol.65, pp.5, 2016, https://doi.org/10.5370/KIEE.2016.65.5.811