DOI QR코드

DOI QR Code

해양지중에 저장된 이산화탄소의 단층을 통한 누출 위험 평가에 관한 수치해석 연구

A Numerical Study on the CO2 Leakage Through the Fault During Offshore Carbon Sequestration

  • 강관구 (선박해양플랜트연구소 해양 CCS연구단) ;
  • 허철 (한국해양대학교 해양과학기술융합학과) ;
  • 강성길 (선박해양플랜트연구소 해양안전연구부)
  • Kang, Kwangu (Offshore CCS Unit, Korea Research Institute of Ships & Ocean Engineering) ;
  • Huh, Cheol (Ocean Science & Technology School, Korea Maritime and Ocean University) ;
  • Kang, Seong-Gil (Offshore Safety Research Division, Korea Research Institute of Ships & Ocean Engineering)
  • 투고 : 2014.12.17
  • 심사 : 2015.05.07
  • 발행 : 2015.05.25

초록

$CO_2$ 배출을 줄이기 위해서 최근 $CO_2$ 포집 및 저장 기술에 관한 연구가 전세계적으로 활발히 진행되고 있다. 국내에서는 해양퇴적층을 대상으로 한 $CO_2$ 저장 연구가 활발히 진행되고 있다. 이러한 $CO_2$ 저장 연구에서 가장 중요한 요소 중 하나는 안전성 확보이다. 지중저장의 안전성 확보를 위해서 저장 $CO_2$의 누출 가능성과 누출 특성을 예측하는 것은 매우 중요하다. 본 연구에서는 해양지중에 저장된 $CO_2$가 단층을 통하여 누출될 수 있는 시나리오를 가정한 후, 지중공간 내 $CO_2$ 확산 및 누출 거동을 TOUGH2-MP ECO2N을 사용하여 시뮬레이션 하였다. 대상 저장지는 150 m 수심의 대륙붕 해저 825 m 지점에 있는 두께 150 m의 대염수층이고, 누출이 진행되는 경로는 주입정에서 1,000 m 떨어진 단층이다. 저장된 $CO_2$는 주입 압력과 밀도차에 의한 부력에 의해서 이동하게 된다. $CO_2$가 해수면으로 누출되기 위해서는 주입정에서 인가된 압력차가 $CO_2$를 단층 하단에 도달할 수 있게 할 만큼 충분히 커야 한다. 단층 하단에 도달한 $CO_2$는 추가적인 압력 구배가 없어도 부력에 의해서 누출된다. $CO_2$ 주입과 동시에 공극수는 $CO_2$가 누출되기 전까지 지속적으로 해저면으로 누출된다. $CO_2$가 해저면에 도착하면 공극수의 누출은 중단되고, 누출되는 $CO_2$질량에 상응하는 해수가 부력의 반대 작용으로 인해 단층으로 유입되는 것으로 계산되었다. 주입량이 누출에 미치는 영향을 평가하기 위하여 연간 $CO_2$ 주입량 100만 톤, 75만 톤, 50만 톤 에 대한 민감도분석을 수행하였으며, 누출이 일어난 시점은 주입 후 각각 11.3 년, 15.6년, 23.2년으로 계산되었다. 또한, 주입이 종료 된 이후에도 누출은 특정 기간 동안 지속되는 것으로 계산되었다. 누적 주입량 대비 누적 누출량은 연간 $CO_2$ 주입량이 100만 톤, 75만 톤, 50만 톤인 경우, 각각 19.5%, 11.5%, 2.8% 이다.

To mitigate the greenhouse gas emission, many carbon capture and storage projects are underway all over the world. In Korea, many studies focus on the storage of $CO_2$ in the offshore sediment. Assurance of safety is one of the most important issues in the geological storage of $CO_2$. Especially, the assessment of possibility of leakage and amount of leaked $CO_2$ is very crucial to analyze the safety of marine geological storage of $CO_2$. In this study, the leakage of injected $CO_2$ through fault was numerically studied. TOUGH2-MP ECO2N was used to simulate the subsurface behavior of injected $CO_2$. The storage site was 150 m thick saline aquifer located 825 m under the continental shelf. It was assumed that $CO_2$ leak was happened through the fault located 1,000 m away from the injection well. The injected $CO_2$ could migrate through the aquifer by both pressure difference driven by injection and buoyancy force. The enough pressure differences made it possible the $CO_2$ to migrate to the bottom of the fault. The $CO_2$ could be leaked to seabed through the fault due to the buoyancy force. Prior to leakage of the injected $CO_2$, the formation water leaked to seabed. When $CO_2$ reached the seabed, leakage of formation water stopped but the same amount of sea water starts to flow into the underground as the amount of leaked $CO_2$. To analyze the effect of injection rate on the leakage behavior, the injection rate of $CO_2$ was varied as 0.5, 0.75, and $1MtCO_2/year$. The starting times of leakage at 1, 0.75 and $0.5MtCO_2/year$ injection rates are 11.3, 15.6 and 23.2 years after the injection, respectively. The leakage of $CO_2$ to the seabed continued for a period time after the end of $CO_2$ injection. The ratios of total leaked $CO_2$ to total injected $CO_2$ at 1, 0.75 and $0.5MtCO_2/year$ injection rates are 19.5%, 11.5% and 2.8%, respectively.

키워드

참고문헌

  1. Aoyagi, R. et al., 2011, "Study on role of simulation of possible leakage from geological $CO_2$ storage in sub-seabed for environmental impact assessment", Energy Procedia, Vol. 3, No. 1, 1-8. https://doi.org/10.1016/j.egypro.2011.01.001
  2. Chenj, Z. et al., 2006, Computational method for multiphase flows in porous media, Society for Industrial and Applied Mathematics.
  3. Corey, A. T., 1954, "The interrelation between gas and oil relative permeabilities", Producers Monthly, Vol. 19, No. 1, 38-41.
  4. Esposito, A. and S. M. Benson, 2011, "Remediation of possible leakage from geologic $CO_2$ storage reservoirs into groundwater aquifers", Energy Procedia, Vol. 4, 3216-3223. https://doi.org/10.1016/j.egypro.2011.02.238
  5. Folger, P., 2009, Carbon Capture and Sequestration (CCS), Congressional Research Service.
  6. Goodarzi, S. and A. T. Settari, 2009, Geomechanical modeling and analysis: Wabamun area $CO_2$ sequestration project (WASP), Institute for Sustainable Energy, Environment and Economy.
  7. Hildenbrand, et al., 2002, "Gas breakthrough experiments on fine-grained sedimentary rocks", Geofluids, Vol. 2, No. 1, 3-23. https://doi.org/10.1046/j.1468-8123.2002.00031.x
  8. IPCC, 2005, IPCC special report on carbon dioxide capture and storage, Cambrige Univ. Press.
  9. Kaviany, M., 1995, Principles of heat transfer in porous media, Springer.
  10. Kharaka, Y. K. et al., 2009, "Potential environmental issues of CO2 storage in deep saline aquifers: Geochemical results from the Frio-I Brine Pilot test, Texas, USA", Applied Geochemistry, Vol. 24, 1106-1112. https://doi.org/10.1016/j.apgeochem.2009.02.010
  11. Kim, H. et al., 2013, "Case Study on Stability Assessment of Preexisting Fault at $CO_2$ Geologic Storage", TUNNEL & UNDERGROUND SPACE, Vol. 23, No. 1, 13-30. https://doi.org/10.7474/TUS.2013.23.1.013
  12. NIAIST, 2001, "Physical Property of Rocks of Japan", from https://gbank.gsj.jp/prock/welcome.html.
  13. Nogues, J. P. et al., 2011, "Detecting leakage of brine or $CO_2$ through abandoned wells in a geological sequestration operation using pressure monitoring wells", Energy Procedia, Vol. 4, 3620- 3627. https://doi.org/10.1016/j.egypro.2011.02.292
  14. Prigiobbe, V. et al., 2014, "Enhanced transport of heavy metals due to a $CO_2$-acidified brine", Energy Procedia, Vol. 63, 3261- 3267. https://doi.org/10.1016/j.egypro.2014.11.353
  15. Pruess, K., 2005, ECO2N: A TOUGH2 fluid property module for mixures of water, NaCl, and $CO_2$, Lawrence Berkeley National Laboratory LBNL-57952.
  16. Pruess, K., 2008, "On $CO_2$ fluid flow and heat transfer behavior in the subsurface, following leakage from a geologic storage reservoir", Environmental Geology, Vol. 54, No. 8, 1677-1686. https://doi.org/10.1007/s00254-007-0945-x
  17. Pruess, K. et al., 2002, Intercomparison of numerical simulation codes for geologic disposal of $CO_2$, Lawrence Berkeley National Laboratory, LBNL-51813.
  18. Pruess, K. et al., 1999, TOUGH2 user's guide, version 2.0, Lawrence Berkeley National Laboratory LBNL-43134.
  19. Spycher, N. et al., 2003, "$CO_2-H_2O$ mixtures in the geological sequestration of $CO_2$. I. Assessment and calculation of mutual solubilities from 12 to $100^{\circ}C$ and up to 600 bar", Geochimica et Cosmochimica Acta, Vol.67, No.16, 3015-3031. https://doi.org/10.1016/S0016-7037(03)00273-4
  20. Van Genuchten, M. T., 1980, "A closed-form equation for predicting the hydraulic conductivity of unsaturated soils", Soil Science Society of America Journal, Vol. 44, No. 5, 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
  21. Walsh, J. J. et al., 1998, "Representation and scaling of faults in fluid flow models", Petroleum Geoscience, Vol. 4, 241-251. https://doi.org/10.1144/petgeo.4.3.241
  22. Zeidouni, M. et al., 2014, "Monitoring above-zone temperature variations associated with $CO_2$ and brine leakage from a storage aquifer", Environmental Earth Sciences, Vol. 72, 1733-1747. https://doi.org/10.1007/s12665-014-3077-0
  23. Zhang, K. et al., 2008, User's Guide for TOUGH2-MP: A Massively Parallel Version of the TOUGH2 Code, Lawrence Berkeley National Laboratory LBNL-315E.

피인용 문헌

  1. Strategy for Development of HSE Management Framework for Offshore CCS Project in Korea vol.20, pp.1, 2017, https://doi.org/10.7846/JKOSMEE.2017.20.1.26