DOI QR코드

DOI QR Code

Ethanol Concentration Sensor Using Microfluidic Metamaterial Absorber

에탄올의 농도를 검출하기 위한 미세유체 메타물질 흡수체

  • Kim, Hyung Ki (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Yoo, Minyeong (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Lim, Sungjoon (School of Electrical and Electronics Engineering, Chung-Ang University)
  • 김형기 (중앙대학교 전자전기공학부) ;
  • 유민영 (중앙대학교 전자전기공학부) ;
  • 임성준 (중앙대학교 전자전기공학부)
  • Received : 2015.03.16
  • Accepted : 2015.05.12
  • Published : 2015.05.31

Abstract

In this paper, we proposed a novel ethanol concentration sensor using microfluidic metamaterial absorber. The metamaterial absorber comprises a split-ring-cross resonator(SRCR) and a microfluidic channel. The SRCR can generate LC resonance that is very sensitive to changes in the effective dielectric constant around the capacitive gap. In addition, microfluidic channels can change the effective dielectric constant of the dielectric substrate by using an infinitesimal quantity of a liquid on the order of microliters. The proposed absorber can detect the electrical properties of different concentration of ethanol. The performance of the proposed absorber is demonstrated using the absorption measurements of a fabricated prototype sample with waveguides. In addition, the simulated results and measurement results show good agreement.

본 논문에서는 메타물질 흡수체를 사용한 새로운 에탄올 농도 검출 센서를 제안한다. 메타물질 흡수체는 분할고리십 자공진기(SRCR: Split Ring Cross Resonator) 구조와 미세유체 채널로 구성되어 있다. SRCR 구조는 capacitive 간극 부근의 실효 유전율에 민감하게 반응하는 LC 공진을 발생시킨다. 미세유체 채널은 마이크로 리터 단위의 극미량 액체를 사용하여 유전체 기판의 실효 유전율을 변화시킬 수 있다. 본 연구에서 제안한 미세유체 메타물질 흡수체는 미세유체 채널에 주입된 에탄올의 농도에 따른 전기적 특성을 감지하여 그 농도를 검출할 수 있다. 제안된 흡수체는 도파관 측정법을 사용하여 측정하였고, 미세유체 채널에 각기 다른 농도의 에탄올이 흐를 때 공진 주파수가 이동하는 것을 확인하였다. 또한, 시뮬레이션과 측정 결과 사이에 높은 일치율을 보인다.

Keywords

References

  1. G. Wen, X. Wen, S. Shung, and M. Choi, "Whole-cell biosensor for determination of methanol", Sensors Actuators B: Chem., vol. 201, no. 1, pp. 586-591, Oct. 2014. https://doi.org/10.1016/j.snb.2014.04.107
  2. I. Dimov, L. Basabe-Desmonts, J. Garcia-Cordero, B. Ross, A. Ricco, and L. Lee, "Stand-alone self-powered integrated microfluidic blood analysis system(SIMBAS)", Lab on a Chip, vol. 11, no. 5, pp. 845-850, Mar. 2011 https://doi.org/10.1039/C0LC00403K
  3. E. Delamarche, A. Bernard, H. Schmid, A. Bietsch, B. Michel, and H. Biebuyck, "Microfluidic networks for chemical patterning of substrates: Design and application to bioassays", J. Am. Chem. Soc., vol. 120, no. 3, pp. 500- 508, Jan. 1998. https://doi.org/10.1021/ja973071f
  4. A. Martinez, S. Phillips, G. Whitesides, and E. Carrilho, "Diagnostics for the developing world: Microfluidic paper- based analytical devices", Anal. Chem., vol. 82, no. 1, pp. 3-10, Jan. 2010. https://doi.org/10.1021/ac9013989
  5. K. Abe, K. Suzuki, and D. Citterio, "Inkjet-printed microfluidic multianalyte chemical sensing paper", Anal. Chem., vol. 80, no. 18, pp. 6928-6934, Sep. 2008. https://doi.org/10.1021/ac800604v
  6. B. Cook, J. Cooper, and M. Tentzeris, "An inkjet-printed microfluidic RFID-enabled platform for wireless lab-onchip applications", IEEE Trans. on Microw. Theo. and Tech., vol. 61, pp. 4714-4723, Nov. 2013. https://doi.org/10.1109/TMTT.2013.2287478
  7. W. Mullett, K. Levsen, D. Lubda, and J. Pawliszyn, "Biocompatible in-tube solid-phase microextraction capillary for the direct extraction and high-performance liquid chromatographic determination of drugs in human serum", Journal of Chromatography A, vol. 963, no. 1, pp. 325-334, Jul. 2002. https://doi.org/10.1016/S0021-9673(02)00216-9
  8. R. Dahlgren, E. Nieuwenhuyse, and G. Litton, "Transparency tube provides reliable water-quality measurements", Calif. Agric., vol. 58, no. 3, pp. 149-153, Sep. 2004. https://doi.org/10.3733/ca.v058n03p149
  9. J. Mateu, N. Orloff, M. Rinehart, and J. Booth, "Broadband permittivity of liquids extracted from transmission line measurements of microfluidic channels", IEEE/MTTS International Microwave Symposium, pp. 523-526, Jun. 2007.
  10. T. Chretiennot, D. Dubuc, and K. Grenier, "A microwave and microfluidic planar resonator for efficient and accurate complex permittivity characterization of aqueous solutions", IEEE Trans. on Microw. Theo. and Tech., vol. 61, no. 2, pp. 972-978, Dec. 2012. https://doi.org/10.1109/TMTT.2012.2231877
  11. G. Hayes, J. So, A. Qusba, M. Dickey, and G. Lazzi, "Flexible liquid metal alloy(EGaIn) microstrip patch antenna", IEEE Trans. on Ant. and Prop., vol. 60, no. 5, pp. 2151-2156, Apr. 2012. https://doi.org/10.1109/TAP.2012.2189698
  12. N. Landy, S. Sajuyigbe, J. Mock, D. Smith and W. Padilla, "Perfect metamaterial absorber", Phys. Rev. Lett., vol. 100, no. 20, pp. 207402, May 2008. https://doi.org/10.1103/PhysRevLett.100.207402
  13. E. Ekmekci, G. Turhan-Sayan, "Metamaterial sensor applications based on broadside-coupled SRR and V-shaped resonator structures", IEEE International Symposium on Antennas and Propagation(APSURSI), pp. 1170-1172, Jul. 2011.
  14. R. Melik, E. Unal, N. Perkgoz, C. Puttlitz, and H. Demir, "Metamaterial-based wireless strain sensors", Appl. Phys. Lett., vol. 95, no. 1, pp. 011106, Jul. 2009. https://doi.org/10.1063/1.3162336
  15. W. Withayachumnankul, C. Fumeaux, and D. Abbott, "Compact electric-LC resonators for metamaterials", Optics Express, vol. 18, no. 25, pp. 25912-25921, Dec. 2010. https://doi.org/10.1364/OE.18.025912
  16. K. Gupta, R. Garg, and I. Bahl, Microstrip Lines and Slotlines, Artech House, 1979.
  17. D. Smith, D. Vier, T. Koschny, and C. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials", Physical Review E, vol. 71, no. 3, pp. 036617, Mar. 2005. https://doi.org/10.1103/PhysRevE.71.036617
  18. H. Chen, J. Zhang, Y. Bai, Y. Luo, L. Ran, Q. Jiang, and J. Kong, "Experimental retrieval of the effective parameters of metamaterials based on a waveguide method", Optics Express, vol. 14, no. 26, pp. 12944-12949, Dec. 2006. https://doi.org/10.1364/OE.14.012944