DOI QR코드

DOI QR Code

Quantitative Study of CO2 based on Satellite Image for Carbon Budget on Flux Tower Watersheds

플럭스 타워 설치 유역을 대상으로 탄소수지 분석을 위한 위성영상자료기반의 CO2 정량화 연구

  • Jung, Chung Gil (Konkuk university, department of civil and envirinmental system engineering) ;
  • Lee, Yong Gwan (Konkuk university, department of civil and envirinmental system engineering) ;
  • Kim, Seong Joon (Konkuk university, department of civil and envirinmental system engineering) ;
  • Jang, Cheol Hee (Korea institute of civil engineering and bulding technology, department of water resources and environment research)
  • Received : 2015.01.30
  • Accepted : 2015.05.21
  • Published : 2015.05.30

Abstract

Spatial heterogeneous characteristics of solar radiation energy from Climate Change gives rise to energy imbalance in the general ecological system including water resources. This study is to estimate the $CO_2$ flux of South Korea using Terra MODIS image and to assess the reliability of MODIS data from the ground measured $CO_2$ flux by eddy covariance flux tower data at 3 locations (two at mixed forest area and one at rice paddy area). The MODIS Gross Primary Productivity (GPP) product (MOD17A2), 8-day composite at 1-km spatial resolution was adopted for the spatial $CO_2$ flux generation. The MOD17A2 data by noise like cloud and snow in a day were tried to fill by Inverse Distance Weighted (IDW) method from valid pixels and the damping effect of MOD17A2 data were corrected by Quality Control (QC) flag. The MODIS $CO_2$ flux was estimated as the sum of GPP and Re (ecosystem respiration) by Lloyd and Taylor method (1994). The determination coefficient ($R^2$) between MODIS $CO_2$ and flux tower $CO_2$ for 3 years (2011~2013) showed 0.55 and 0.60 in 2 mixed forests and 0.56 in rice paddy respectively. The $CO_2$ flux generally fluctuated showing minus values during summer rainy season (from July to August) and maintaining plus values for other periods. The MODIS $CO_2$ flux can be a useful information for extensive area, for example, as a reliable indicator on ecological circulation system.

Keywords

References

  1. Choi, T., J. Kim, and J. I. Yun, 1999. On using the eddy covariance method to study the interaction between agro-forest ecosystems and the atmosphere. Korean Journal of Agricultural and Forest Meteorology 1(1): 1-15 (in Korean).
  2. Cohen, W.B. and C.O. Justice. 1999. Validating MODIS terrestrial ecology products: linking in situ and satellite measurements. Remote Sensing of Environment 70: 1-4 https://doi.org/10.1016/S0034-4257(99)00053-X
  3. Guo, M., X. Wang, J. Li, K. Yi, G. Zhong, and H. Tani. 2012. Assessment of global carbon dioxide concentration using MODIS and GOSAT data. Sensors 2012, 12, 16368-16399; doi:10.3390/s121216368.
  4. Heinsch, F. A., M. Reeves, C. F. Bowker, P. Votava, S. Kang, C. Milesi, M. Zhao, J. Glassy, W. M. Jolly, J. S. Kimball, R. R. Nemani, and S. W. Running, 2003. User's guide: GPP and NPP (MOD17A2/A3) products, NASA MODIS Land Algorithm. http://www.forestry.umt.edu/ntsg/.
  5. Hong, J. K., H. J. Kwon, and J. Kim, 2009. Measurement of Evapotranspiration by Eddy-Covariance Technique. 2-4. TR 2009-13. Sustainable Water Resources Research Center (in Korean).
  6. Hong, J., H. Kwon, J. H. Lim, Y. H. Byun, J. Lee, and J. Kim, 2009. Standardization of KoFlux eddy-covariance data processing. Korean Journal of Agricultural and Forest Meteorology 11(1): 19-26 (in Korean). https://doi.org/10.5532/KJAFM.2009.11.1.019
  7. Hong, J. Y., C. S. Shim, M. J. Lee, G. H. Baek, W. K. Song, and Y. H. Park, 2011. Net primary production changes over Korea and climate factors. Korean Journal of Remote Sensing 27(4): 467-480 (in Korean). https://doi.org/10.7780/kjrs.2011.27.4.467
  8. Hong, W. Y., H. J. Shin, and S. J. Kim, 2007. Extraction of Snow Cover Area and Depth using MODIS Image for 5 River Basins in South Korea. KCID J. 14(2): 65-75 (in Korean).
  9. Houghton, R. A., and J. L. Hackler, 2001. Carbon Flux to the Atmosphere From Land-use Changes: 1850 to 1990. NDP- 050/R1, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee.
  10. Hur, Y.M. and Choi, M.H. 2011. Advanced Microwave Scanning Radiometer E Soil Moisture Evaluation for Haenam Flux Monitoring Network Site. Korean Journal of Remote Sensing 27(2): 131-140 . https://doi.org/10.7780/kjrs.2011.27.2.131
  11. Joh, H.K., J.W. Lee, H.J. Shin, G.A. Park and S.J. Kim. 2010. Evaluation of Evapotranspiration and Soil Moisture of SWAT Simulation for Mixed Forest in the Seolmacheon Catchment. Korean Journal of Agricultural and Forest Meteorology 12(4): 289-297. https://doi.org/10.5532/KJAFM.2010.12.4.289
  12. Kang, M., H. Kwon, J. H. Lim, and J. Kim, 2009. Understory evapotranspiration measured by eddy covariance in Gwangneung deciduous and coniferous forests. Korean Journal of Agricultural and Forest Meteorology 11(4): 233-246 (in Korean). https://doi.org/10.5532/KJAFM.2009.11.4.233
  13. Kang, S., S.W. Running, J. Lim, M. Zhao, C. Park, and R. Loehman, 2003. A MODIS-based climatological phenology model for detecting onset of growing seasons in temperate mixed forests in Korea. Remote Sensing of Environment 86: 232-242. https://doi.org/10.1016/S0034-4257(03)00103-2
  14. Kang, S, K., 2005. Analysis on Cloud-Originated Errors of MODIS leaf Area Index and Primary Production Images : Effect of Monsoon Climate in Korea. Journal of Ecology and Field Biology 29(6): 215-222.
  15. Kang, S. K., Y. I. Kim, and Y. J. Kim, 2005. Errors of MODIS product of Gross Primary Productivity by using Data Assimilation Office Meteorological Data. Korean Journal of Agricultural and Forest meteorology 7(2): 171-183 (in Korean).
  16. Kang, S. K., K. C. Jang, B. R. Lee, and S. H. Kim, 2008. User's manual for MODIS data processing and mapping evapotranspiration. 3-6. TR 2008-13. Sustainable Water Resources Research Center.
  17. Kim, D. E., J. J. Baek, S. W. Jung, and M. H. Choi, 2013. Net radiation esimation using flux tower data and integrated hydrological model: For the seolmachoen and Chungmicheon watershed. J. Korea Water Resources Association 46(3): 301-314 (In Korean). https://doi.org/10.3741/JKWRA.2013.46.3.301
  18. Kim, N. W., J. E. Lee, I. M. Jung, and D.P. Kim, 2008. Hydrologic Component Analysis of the Seolma-Cheon Watershed by Using SWAT-K Model. Journal of the Environmental Sciences 17(12): 1363-1372 (in Korean). https://doi.org/10.5322/JES.2008.17.12.1363
  19. Kim, Y. I., S. K. Kang, and J. Kim, 2007. Enhancing the Reliability of MODIS Gross Primary Productivity (GPP) by Improving Input Data. Korean Journal of Agricultural and Forest meteorology 9(2): 132-139 (in Korean). https://doi.org/10.5532/KJAFM.2007.9.2.132
  20. K-water, 2013, Report on technical assistance of Deokyusan flux tower evapotranspiration estimation and analysis (in Korean).
  21. Kwon, H., and J. Kim, 2010. KoFlux issue : KoFlux's progress: Background, status and direction. Korean Journal of Agricultural and Forest Meteorology 12(4): 241-263 (in Korean). https://doi.org/10.5532/KJAFM.2010.12.4.241
  22. Kwon, H., S. Park, M. Kang, J. Yoo, R. Yuan, and J. Kim, 2007. Quality control and assurance of eddy covariance data at two KoFlux sites. Korean Journal of Agricultural and Forest Meteorology 9(4): 260-267 (in Korean). https://doi.org/10.5532/KJAFM.2007.9.4.260
  23. Lloyd, J. and J. A. Taylor, 1994. On the temperature dependence of soil respiration. Functional Ecol. 8, 315-323. https://doi.org/10.2307/2389824
  24. Morisette, J.T., J.L. Privette and C.O. Justice. 2002. A framework for the validation of MODIS Land products. Remote Sensing of Environment 83: 77-96. https://doi.org/10.1016/S0034-4257(02)00088-3
  25. Myneni, R.B., S. Hoffman, Y. Knyazikhin, J.L. Privette, J.Glassy, Y. Tian, Y. Wang, X. Song, Y. Zhang, G.R. Smith, A. Lotsch, M. Friedl, J.T. Morisette, P. Votava, R.R. Nemani and S.W. Running, 2002. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sensing of Environment 83: 214-231. https://doi.org/10.1016/S0034-4257(02)00074-3
  26. Park, J.Y., H. Jung, C.H. Jang and S.J. Kim. 2014. Assessing Climate Change lmpact on Hydrological Components of Yongdam Dam Watershed Using RCP Emission Scenarios and SWAT Model. Journal of the Korean Society of Agricultural Engineers 56(3): 19-29 (in Korean). https://doi.org/10.5389/KSAE.2014.56.3.019
  27. Running, S. W., P. E. Thornton, R. R. Nemani, and J. M. Glassy, 2000: Global terrestrial gross and net primary productivity from the earth observing system. Methods in Ecosystem Science, O. E. Sala, R. B. Jackson, R. B., H. A. Mooney, and R. W. Howarth (Eds.), Springer-Verlag. New York.
  28. Santhi, C, J. G. Arnold, J. R. Williams, W. A. Dugas, R. Srinivasan, and L. M. Hauck. 2001: Validation of the SWAT model on a large river basin with point and nonpoint sources. J. American Water Resources Assoc. 37(5): 1169-1188 https://doi.org/10.1111/j.1752-1688.2001.tb03630.x
  29. Sellers, P. J., C. J. Tucker, G. J. Collatz, S. O. Los, C. O. Justice, D. A. Dazlich, and D. A. Randall, 1994: A global 1o by 1o NDVI data set for climate studies: 2. The generation of global fields of terrestrial biophysical parameters from the NDVI. International Journal of Remote Sensing 15, 3519-3545. https://doi.org/10.1080/01431169408954343
  30. Tian, H., J. M. Melillo, D. W. Kicklighter, S. Pan, J. Liu, A. D. Mcguire, and B. Moore, 2003. Regional carbon dynamics in monsoon Asia and its implications for the global carbon cycle. Global and Planetary Change 37: 201-217.
  31. Turner, D.P., W. Ritts, W.B. Cohen, S.T. Gower, M. Zhao, and S.W. Running, 2003. Scaling gross primary production (GPP) over boreal and deciduous forest landscapes in support of MODIS GPP product validation. Remote Sensing of Environment 88: 256-270. https://doi.org/10.1016/j.rse.2003.06.005
  32. Van Gorsel, E., R. Leuning, H. Cleugh, H. Keith, and T. Suni, 2007. Nocturnal carbon efflux: reconciliation of eddy covariance and chamber measurements using an alternative to the u*- threshold filtering. Tellus 59B, 397-403.
  33. Van Liew, M. W., T. L. Veith, D. D. Bosch, and J. G. Arnold, 2007: Suitability of SWAT for the conservation effects assessment project: A comparison on USDA-ARS experimental watersheds. J. Hydrologic Eng. 12(2): 173-189 https://doi.org/10.1061/(ASCE)1084-0699(2007)12:2(173)
  34. Wen, K. F., G. R. Yu, X. M. Sun, Q. K. Li, Y. F. Liu, L. M. Zhang, C. Y. Ren, Y. L. Fu, and Z. Q. Li, 2006. Soil moisture effect on the temperature dependence of ecosystem respiration in a subtropical Pinus plantation of southeastern China. Agricultural and Foreset Meteorology 137: 166-175. https://doi.org/10.1016/j.agrformet.2006.02.005
  35. Zhao. M., and S. W. Running, 2010. Drought induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329(5994): 940-943. https://doi.org/10.1126/science.1192666
  36. Zhao. M., F.A. Heinsch, R.R. Nemani, and S.W. Running, 2005. Improvements of the MODIS terrestrial gross and net primary production global dataset. Remote Sensing of Environment 95: 164-176. https://doi.org/10.1016/j.rse.2004.12.011