DOI QR코드

DOI QR Code

A Degree-Constrained Minimum Spanning Tree Algorithm Using k-opt

k-opt를 적용한 차수 제약 최소신장트리 알고리즘

  • Lee, Sang-Un (Dept. of Multimedia Eng., Gangneung-Wonju National University)
  • 이상운 (강릉원주대학교 멀티미디어공학과)
  • Received : 2015.02.11
  • Accepted : 2015.04.10
  • Published : 2015.05.30

Abstract

The degree-constrained minimum spanning tree (d-MST) problem is considered NP-complete for no exact solution-yielding polynomial algorithm has been proposed to. One thus has to resort to an heuristic approximate algorithm to obtain an optimal solution to this problem. This paper therefore presents a polynomial time algorithm which obtains an intial solution to the d-MST with the help of Kruskal's algorithm and performs k-opt on the initial solution obtained so as to derive the final optimal solution. When tested on 4 graphs, the algorithm has successfully obtained the optimal solutions.

방향 가중 그래프의 차수제약 최소신장트리 (degree-constrained minimum spanning tree, d-MST) 문제는 정확한 해를 구하는 다항시간 알고리즘이 존재하지 않아 NP-완전 문제로 알려져 왔다. 따라서 휴리스틱한 근사 알고리즘을 적용하여 최적 해를 구하고 있다. 본 논문은 차수와 사이클을 검증하는 Kruskal 알고리즘으로 d-MST의 초기 해를 구하고, d-MST의 초기 해에 대해 k-opt를 수행하여 최적 해를 구하는 다항시간 알고리즘을 제안하였다. 제안된 알고리즘을 4개의 그래프에 적용한 결과 2-MST까지 최적 해를 구할 수 있었다.

Keywords

References

  1. O. Boruvka, "O Jistem Problemu Minimalnim," Prace Mor. Prrodved. Spol. V Brne (Acta Societ. Natur. Moravicae), Vol. III, No. 3, pp. 37-58, Mar. 1926.
  2. J. Nesetril, E. Milkova, and H. Nesetrilova, "Otakar Boruvka on Minimum Spanning Tree Problem (Translation of the both 1926 Papers, Comments, History)," DMATH: DiscreteMathematics, Vol. 233, No. 1-3, Apr. 2001.
  3. R. C. Prim, "Shortest Connection Networks and Some Generalisations," Bell SystemTechnical Journal, Vol. 36, No. 6, pp. 1389-1401, Nov. 1957.
  4. J. B. Kruskal, "On the Shortest Spanning Subtree and The Traveling Salesman Problem," Proceedings of the American Mathematical Society, Vol. 7, pp. 48-50, 1956.
  5. Wikipedia, "Minimum Spanning Tree," http://en.wikipedia.org/wiki/Minimum_spanning_tree, 2014.
  6. Wikipedia, "Degree-constrained Spanning Tree," http://en.wikipedia.org/wiki/Degree-constrained_Spanning_Tree, 2014.
  7. G. R. Raidl, "An Efficient Evolutionary Algorithmfor the Degree-Constrained Minimum Spanning Tree Problem," Proceedings of the 2000 IEEE Congress on Evolutionary Computation, pp. 104-111, IEEE Press, 2000.
  8. S. C. Narula and C. A. Ho, "Degree-Constrained Minimum Spanning Tree," Computational Operations Research, Vol. 7, pp. 239-249, 1980. https://doi.org/10.1016/0305-0548(80)90022-2
  9. M. Gen, "Evolutionary Algorithms and Optimization: Theory and Its Application," Software Computing Lab., Waseda University, IPS., 2004.
  10. C. H. Chu, G. Premkumar, C. Chou, and J. Sun, "Dynamic Degree Constrained Network Design: A Genetic Algorithm Approach," School of Computer Science, University of Birmingham, UK., 1999.
  11. G. Zhou and M. Gen, "A Note on Genetic Algorithms for Degree-Constrained Spanning Tree Problems," Networks, Vol. 30, No. 2, pp. 91-95, Sep. 1997. https://doi.org/10.1002/(SICI)1097-0037(199709)30:2<91::AID-NET3>3.0.CO;2-F
  12. J. Knowles, D. Corne, and M. Oates, "A New Evolutionary Approach to the Degree Constrained Minimum Spanning Tree Problem," Trans. on Evolutionary Computation, Vol. 4, No. 2, pp. 125-134, Jul. 2000. https://doi.org/10.1109/4235.850653
  13. X. Duan, C. Wang, X. Lue, and N. Wang, "AHybrid Algorithm Based on Particle Swarm Optimization," International Journal of Information and Systems Science, Vol. 1, No. 3-4, pp. 275-282, Apr. 2005.
  14. L. Gouveia and P. Moura, "Models for the Degree Constrained Minimum Spanning Tree Problem with Node-Degree Dependent Costs," International Network Optimization Conference, Spa, Belgium, 2007.
  15. M. Krishnamoorthy, A. T. Ernst, and Y. M. Sharaiha, "Comparison of Algorithms for the Degree Constrained Minimum Spanning Tree," Journal of Heuristics, Vol. 7, No. 6, pp. 587-611, Nov. 2001. https://doi.org/10.1023/A:1011977126230
  16. G. Zhou and M. Gen, "Approach to the Degree-Constrained Minimum Spanning Tree Problem Using Genetic Algorithms," Engineering Design and Automation, Vol. 3, No. 2, pp. 156-165, Feb. 1997.
  17. M. Savelsbergh and T. Volgenant, "Edge-Exchanges in the Degree-Constrained Minimum Spanning Tree Problem," Computers and Operations Research, Vol. 12, No. 4, pp. 341-348, Apr. 1985. https://doi.org/10.1016/0305-0548(85)90032-2
  18. L. Stougie, "2P350: Optimaliseringsmethoden," http://www.win.tue.nl/-leen/OW/2P350/Week8/week8.pdf, College Wordt ggeven op vinjdagmiddag, 2001.

Cited by

  1. 안정된 결혼문제에 대한 최적화 알고리즘 vol.18, pp.4, 2018, https://doi.org/10.7236/jiibc.2018.18.4.149