DOI QR코드

DOI QR Code

Validation and Application of a Real-time PCR Protocol for the Specific Detection and Quantification of Clavibacter michiganensis subsp. sepedonicus in Potato

  • Cho, Min Seok (National Academy of Agricultural Science, Rural Development Administration) ;
  • Park, Duck Hwan (Department of Applied Biology, College of Agriculture and Life Sciences, Kangwon National University) ;
  • Namgung, Min (Department of Applied Biology, College of Agriculture and Life Sciences, Kangwon National University) ;
  • Ahn, Tae-Young (Department of Microbiology, Dankook University) ;
  • Park, Dong Suk (National Academy of Agricultural Science, Rural Development Administration)
  • Received : 2015.02.05
  • Accepted : 2015.03.20
  • Published : 2015.06.01

Abstract

Clavibacter michiganensis subsp. sepedonicus (Cms) multiplies very rapidly, passing through the vascular strands and into the stems and petioles of a diseased potato. Therefore, the rapid and specific detection of this pathogen is highly important for the effective control of the pathogen. Although several PCR assays have been developed for detection, they cannot afford specific detection of Cms. Therefore, in this study, a computational genome analysis was performed to compare the sequenced genomes of the C. michiganensis subspecies and to identify an appropriate gene for the development of a subspecies-specific PCR primer set (Cms89F/R). The specificity of the primer set based on the putative phage-related protein was evaluated using genomic DNA from seven isolates of Cms and 27 other reference strains. The Cms89F/R primer set was more specific and sensitive than the existing assays in detecting Cms in in vitro using Cms cells and its genomic DNA. This assay was also able to detect at least $1.47{\times}10^2copies/{\mu}l$ of cloned-amplified target DNA, 5 fg of DNA using genomic DNA or $10^{-6}$ dilution point of 0.12 at $OD_{600}$ units of cells per reaction using a calibrated cell suspension.

Keywords

References

  1. Albuquerque, P., Mendes, M. V., Santos, C. L., Moradas-Ferreira, P. and Tavares, F. 2009. DNA signature-based approaches for bacterial detection and identification. Sci. Total Environ. 407:3641-3651. https://doi.org/10.1016/j.scitotenv.2008.10.054
  2. Atlas, R. M. 2004. Handbook of microbiological media. 3rd ed. CRC Press, New York.
  3. Bentley, S. D., Corton, C., Brown, S. E., Barron, A., Clark, L., Doggett, J., Harris, B., Ormond, D., Quail, M. A., May, G., Francis, D., Knudson, D., Parkhill, J. and Ishimaru, C. A. 2008. Genome of the actinomycete plant pathogen Clavibacter michiganensis subsp. sepedonicus suggests recent niche adaptation. J. Bacteriol. 190:2150-2160. https://doi.org/10.1128/JB.01598-07
  4. Bishop, A. and Slack, S. 1987. Effect of inoculum dose and preparation, strain variation, and plant growth conditions on the eggplant assay for bacterial ring rot. Am. Potato J. 64:227-234. https://doi.org/10.1007/BF02853560
  5. Bonde, R. 1942. Ring rot in volunteer plants. Am. Potato J. 19:131-133. https://doi.org/10.1007/BF02850094
  6. Casjens, S. R. and Molineux, I. J. 2012. Short noncontractile tail machines: adsorption and DNA delivery by podoviruses. Adv. Exp. Med. Biol. 726:143-179. https://doi.org/10.1007/978-1-4614-0980-9_7
  7. Che, D., Hasan, M. S. and Chen, B. 2014. Identifying Pathogenicity Islands in Bacterial Pathogenomics Using Computational Approaches. Pathogens 3:36-56. https://doi.org/10.3390/pathogens3010036
  8. Chen, J., Zhang, L., Paoli, G. C., Shi, C., Tu, S. and Shi, X. 2010. A real-time PCR method for the detection of Salmonella enterica from food using a target sequence identified by comparative genomic analysis. Int. J. Food Microbiol. 137:168-174. https://doi.org/10.1016/j.ijfoodmicro.2009.12.004
  9. Cho, M. S., Kang, M. J., Kim, C. K., Seol, Y., Hahn, J. H., Park, S. C., Hwang, D. J., Ahn, T., Park, D. H., Lim, C. K. and Park, D. S. 2011. Sensitive and specific detection of Xanthomonas oryzae pv. oryzae by real-time bio-PCR using pathovar-specific primers based on an rhs family gene. Plant Dis. 95:589-594. https://doi.org/10.1094/PDIS-06-10-0399
  10. De Boer, S., Wieczorek, A. and Kummer, A. 1988. An ELISA test for bacterial ring rot of potato with a new monoclonal antibody. Plant Dis. 72:874-878. https://doi.org/10.1094/PD-72-0874
  11. De Boer, S. and Wieczorek, A. 1984. Production of monoclonal antibodies to Corynebacterium sepedonicum. Phytopathology 74:1431-1434. https://doi.org/10.1094/Phyto-74-1431
  12. De la Cruz, A., Wiese, M. and Schaad, N. 1992. A semiselective agar medium for isolation of Clavibacter michiganensis subsp. sepedonicus from potato tissues. Plant Dis. 76:830-834. https://doi.org/10.1094/PD-76-0830
  13. Golshahi, L., Lynch, K., Dennis, J. and Finlay, W. 2011. In vitro lung delivery of bacteriophages KS4-M and $\Phi$KZ using dry powder inhalers for treatment of Burkholderia cepacia complex and Pseudomonas aeruginosa infections in cystic fibrosis. J. Appl. Microbiol. 110:106-117. https://doi.org/10.1111/j.1365-2672.2010.04863.x
  14. Gudmestad, N. C., Mallik, I., Pasche, J. S., Anderson, N. R. and Kinzer, K. 2009. A real-time PCR assay for the detection of Clavibacter michiganensis subsp. sepedonicus based on the cellulase A gene sequence. Plant Dis. 93:649-659. https://doi.org/10.1094/PDIS-93-6-0649
  15. Gutbrod, O. 1987. Certification policies and practices in reference to bacterial ring rot. Amer. J. Potato Res. 64:677-681. https://doi.org/10.1007/BF02853914
  16. Hu, X., Lai, F., Reddy, A. and Ishimaru, C. 1995. Quantitative detection of Clavibacter michiganensis subsp. sepedonicus by competitive polymerase chain reaction. Phytopathology 85:1468-1473. https://doi.org/10.1094/Phyto-85-1468
  17. John Schneider, B., Zhao, J. and Orser, C. S. 1993. Detection of Clavibacter michiganensis subsp. sepedonicus by DNA amplification. FEMS Microbiol. Lett. 109:207-212.
  18. Kado, C. I. 2010. Ring Rot of Potatoes. In: Plant Bacteriology. Am. Phytopathol. Soc. pp. 136-140. St. Paul, MN.
  19. Lang, J. M., Hamilton, J. P., Diaz, M. G. Q., Van Sluys, M. A., Burgos, M. R. G., Vera Cruz, C. M., Buell, C. R., Tisserat, N. A. and Leach, J. E. 2010. Genomics-based diagnostic marker development for Xanthomonas oryzae pv. oryzae and X. oryzae pv. oryzicola. Plant Dis. 94:311-319. https://doi.org/10.1094/PDIS-94-3-0311
  20. Lee, I. M., Bartoszyk, I. M., Gundersen, D. E., Mogen, B. and Davis, R. E. 1997. Nested PCR for ultrasensitive detection of the potato ring rot bacterium, Clavibacter michiganensis subsp. sepedonicus. Appl. Environ. Microbiol. 63:2625-2630.
  21. Leiman, P. G. and Shneider, M. M. 2012. Contractile tail machines of bacteriophages. Adv. Exp. Med. Biol. 726:93-114. https://doi.org/10.1007/978-1-4614-0980-9_5
  22. Li, W., Hartung, J. S. and Levy, L. 2006. Quantitative real-time PCR for detection and identification of Candidatus Liberibacter species associated with citrus huanglongbing. J. Microbiol. Methods 66:104-115. https://doi.org/10.1016/j.mimet.2005.10.018
  23. Mackay, I. M., Arden, K. E. and Nitsche, A. 2002. Real-time PCR in virology. Nucleic Acids Res. 30:1292-1305. https://doi.org/10.1093/nar/30.6.1292
  24. Manzer, F. and Genereux, H. 1981. Ring rot. In: Compendium of Potato Diseases. ed. by W. J. Hooker, pp. 31-32. Am. Phytopathol. Soc. St. Paul, Mn.
  25. Mills, D., Russell, B. W. and Hanus, J. W. 1997. Specific detection of Clavibacter michiganensis subsp. sepedonicus by amplification of three unique DNA sequences isolated by subtraction hybridization. Phytopathology 87:853-861. https://doi.org/10.1094/PHYTO.1997.87.8.853
  26. Nanduri, V., Sorokulova, I. B., Samoylov, A. M., Simonian, A. L., Petrenko, V. A. and Vodyanoy, V. 2007. Phage as a molecular recognition element in biosensors immobilized by physical adsorption. Biosens. Bioelectron. 22:986-992. https://doi.org/10.1016/j.bios.2006.03.025
  27. Pastrik, K. 2000. Detection of Clavibacter michiganensis subsp. sepedonicus in potato tubers by multiplex PCR with coamplification of host DNA. Eur. J. Plant Pathol. 106:155-165. https://doi.org/10.1023/A:1008736017029
  28. Phillippy, A. M., Mason, J. A., Ayanbule, K., Sommer, D. D., Taviani, E., Huq, A., Colwell, R. R., Knight, I. T. and Salzberg, S. L. 2007. Comprehensive DNA signature discovery and validation. PLoS Comput. Biol. 3:e98. https://doi.org/10.1371/journal.pcbi.0030098
  29. Rademaker, J. and Janse, J. 1994. Detection and identification of Clavibacter michiganensis subsp. sepedonicus and Clavibacter michiganensis subsp. michiganensis by nonradioactive hybridization, polymerase chain reaction, and restriction enzyme analysis. Can. J. Microbiol. 40:1007-1018. https://doi.org/10.1139/m94-161
  30. Schaad, N., Berthier-Schaad, Y., Sechler, A. and Knorr, D. 1999. Detection of Clavibacter michiganensis subsp. sepedonicus in potato tubers by BIO-PCR and an automated real-time fluorescence detection system. Plant Dis. 83:1095-1100. https://doi.org/10.1094/PDIS.1999.83.12.1095
  31. Shabani, A., Zourob, M., Allain, B., Marquette, C. A., Lawrence, M. F. and Mandeville, R. 2008. Bacteriophage-modified microarrays for the direct impedimetric detection of bacteria. Anal. Chem. 80:9475-9482. https://doi.org/10.1021/ac801607w
  32. Singh, A., Poshtiban, S. and Evoy, S. 2013. Recent advances in bacteriophage based biosensors for food-borne pathogen detection. Sensors 13:1763-1786. https://doi.org/10.3390/s130201763
  33. Singh, A., Arutyunov, D., Szymanski, C. M. and Evoy, S. 2012. Bacteriophage based probes for pathogen detection. Analyst 137:3405-3421. https://doi.org/10.1039/c2an35371g
  34. Slack, S., Drennan, J., Westra, A., Gudmestad, N. and Oleson, A. 1996. Comparison of PCR, ELISA, and DNA hybridization for the detection of Clavibacter michiganensis subsp. sepedonicus in field-grown potatoes. Plant Dis. 80:519-524. https://doi.org/10.1094/PD-80-0519
  35. Slezak, T., Kuczmarski, T., Ott, L., Torres, C., Medeiros, D., Smith, J., Truitt, B., Mulakken, N., Lam, M., Vitalis, E., Zemla, A., Zhou, C. E. and Gardner, S. 2003. Comparative genomics tools applied to bioterrorism defence. Brief Bioinform 4:133-149. https://doi.org/10.1093/bib/4.2.133
  36. Smartt, A. E. and Ripp, S. 2011. Bacteriophage reporter technology for sensing and detecting microbial targets. Anal. Bioanal. Chem. 400:991-1007. https://doi.org/10.1007/s00216-010-4561-3
  37. Smietana, M., Bock, W. J., Mikulic, P., Ng, A., Chinnappan, R. and Zourob, M. 2011. Detection of bacteria using bacteriophages as recognition elements immobilized on long-period fiber gratings. Optics Express 19:7971-7978. https://doi.org/10.1364/OE.19.007971
  38. Whelan, J. A., Russell, N. B. and Whelan, M. A. 2003. A method for the absolute quantification of cDNA using real-time PCR. J. Immunol. Methods 278:261-269. https://doi.org/10.1016/S0022-1759(03)00223-0
  39. Wolf, J., Elphinstone, J., Stead, D., Metzler, M., Müller, P., Hukkanen, A. and Karjalainen, R. 2005. Epidemiology of Clavibacter michiganensis subsp. sepedonicus in relation to control of bacterial ring rot. Report 95. Plant Research International B. V., Wageningen.
  40. Xiang, L. and De Boer, S. H. 1995. Selection of polymerase chain reaction primers from an RNA intergenic spacer region for specific detection of Clavibacter michiganensis subsp. sepedonicus. Phytopathology 85:837-842. https://doi.org/10.1094/Phyto-85-837
  41. Zourob, M. and Ripp, S. 2010. Bacteriophage-based biosensors. In: Recognition receptors in biosensors, ed. by. M. Zourob. pp. 415-448. Springer, New York.

Cited by

  1. Development of SCAR markers for rapid and specific detection of Pseudomonas syringae pv. morsprunorum races 1 and 2, using conventional and real-time PCR vol.100, pp.8, 2016, https://doi.org/10.1007/s00253-016-7295-0