References
- Albuquerque, P., Mendes, M. V., Santos, C. L., Moradas-Ferreira, P. and Tavares, F. 2009. DNA signature-based approaches for bacterial detection and identification. Sci. Total Environ. 407:3641-3651. https://doi.org/10.1016/j.scitotenv.2008.10.054
- Atlas, R. M. 2004. Handbook of microbiological media. 3rd ed. CRC Press, New York.
- Bentley, S. D., Corton, C., Brown, S. E., Barron, A., Clark, L., Doggett, J., Harris, B., Ormond, D., Quail, M. A., May, G., Francis, D., Knudson, D., Parkhill, J. and Ishimaru, C. A. 2008. Genome of the actinomycete plant pathogen Clavibacter michiganensis subsp. sepedonicus suggests recent niche adaptation. J. Bacteriol. 190:2150-2160. https://doi.org/10.1128/JB.01598-07
- Bishop, A. and Slack, S. 1987. Effect of inoculum dose and preparation, strain variation, and plant growth conditions on the eggplant assay for bacterial ring rot. Am. Potato J. 64:227-234. https://doi.org/10.1007/BF02853560
- Bonde, R. 1942. Ring rot in volunteer plants. Am. Potato J. 19:131-133. https://doi.org/10.1007/BF02850094
- Casjens, S. R. and Molineux, I. J. 2012. Short noncontractile tail machines: adsorption and DNA delivery by podoviruses. Adv. Exp. Med. Biol. 726:143-179. https://doi.org/10.1007/978-1-4614-0980-9_7
- Che, D., Hasan, M. S. and Chen, B. 2014. Identifying Pathogenicity Islands in Bacterial Pathogenomics Using Computational Approaches. Pathogens 3:36-56. https://doi.org/10.3390/pathogens3010036
- Chen, J., Zhang, L., Paoli, G. C., Shi, C., Tu, S. and Shi, X. 2010. A real-time PCR method for the detection of Salmonella enterica from food using a target sequence identified by comparative genomic analysis. Int. J. Food Microbiol. 137:168-174. https://doi.org/10.1016/j.ijfoodmicro.2009.12.004
- Cho, M. S., Kang, M. J., Kim, C. K., Seol, Y., Hahn, J. H., Park, S. C., Hwang, D. J., Ahn, T., Park, D. H., Lim, C. K. and Park, D. S. 2011. Sensitive and specific detection of Xanthomonas oryzae pv. oryzae by real-time bio-PCR using pathovar-specific primers based on an rhs family gene. Plant Dis. 95:589-594. https://doi.org/10.1094/PDIS-06-10-0399
- De Boer, S., Wieczorek, A. and Kummer, A. 1988. An ELISA test for bacterial ring rot of potato with a new monoclonal antibody. Plant Dis. 72:874-878. https://doi.org/10.1094/PD-72-0874
- De Boer, S. and Wieczorek, A. 1984. Production of monoclonal antibodies to Corynebacterium sepedonicum. Phytopathology 74:1431-1434. https://doi.org/10.1094/Phyto-74-1431
- De la Cruz, A., Wiese, M. and Schaad, N. 1992. A semiselective agar medium for isolation of Clavibacter michiganensis subsp. sepedonicus from potato tissues. Plant Dis. 76:830-834. https://doi.org/10.1094/PD-76-0830
-
Golshahi, L., Lynch, K., Dennis, J. and Finlay, W. 2011. In vitro lung delivery of bacteriophages KS4-M and
$\Phi$ KZ using dry powder inhalers for treatment of Burkholderia cepacia complex and Pseudomonas aeruginosa infections in cystic fibrosis. J. Appl. Microbiol. 110:106-117. https://doi.org/10.1111/j.1365-2672.2010.04863.x - Gudmestad, N. C., Mallik, I., Pasche, J. S., Anderson, N. R. and Kinzer, K. 2009. A real-time PCR assay for the detection of Clavibacter michiganensis subsp. sepedonicus based on the cellulase A gene sequence. Plant Dis. 93:649-659. https://doi.org/10.1094/PDIS-93-6-0649
- Gutbrod, O. 1987. Certification policies and practices in reference to bacterial ring rot. Amer. J. Potato Res. 64:677-681. https://doi.org/10.1007/BF02853914
- Hu, X., Lai, F., Reddy, A. and Ishimaru, C. 1995. Quantitative detection of Clavibacter michiganensis subsp. sepedonicus by competitive polymerase chain reaction. Phytopathology 85:1468-1473. https://doi.org/10.1094/Phyto-85-1468
- John Schneider, B., Zhao, J. and Orser, C. S. 1993. Detection of Clavibacter michiganensis subsp. sepedonicus by DNA amplification. FEMS Microbiol. Lett. 109:207-212.
- Kado, C. I. 2010. Ring Rot of Potatoes. In: Plant Bacteriology. Am. Phytopathol. Soc. pp. 136-140. St. Paul, MN.
- Lang, J. M., Hamilton, J. P., Diaz, M. G. Q., Van Sluys, M. A., Burgos, M. R. G., Vera Cruz, C. M., Buell, C. R., Tisserat, N. A. and Leach, J. E. 2010. Genomics-based diagnostic marker development for Xanthomonas oryzae pv. oryzae and X. oryzae pv. oryzicola. Plant Dis. 94:311-319. https://doi.org/10.1094/PDIS-94-3-0311
- Lee, I. M., Bartoszyk, I. M., Gundersen, D. E., Mogen, B. and Davis, R. E. 1997. Nested PCR for ultrasensitive detection of the potato ring rot bacterium, Clavibacter michiganensis subsp. sepedonicus. Appl. Environ. Microbiol. 63:2625-2630.
- Leiman, P. G. and Shneider, M. M. 2012. Contractile tail machines of bacteriophages. Adv. Exp. Med. Biol. 726:93-114. https://doi.org/10.1007/978-1-4614-0980-9_5
- Li, W., Hartung, J. S. and Levy, L. 2006. Quantitative real-time PCR for detection and identification of Candidatus Liberibacter species associated with citrus huanglongbing. J. Microbiol. Methods 66:104-115. https://doi.org/10.1016/j.mimet.2005.10.018
- Mackay, I. M., Arden, K. E. and Nitsche, A. 2002. Real-time PCR in virology. Nucleic Acids Res. 30:1292-1305. https://doi.org/10.1093/nar/30.6.1292
- Manzer, F. and Genereux, H. 1981. Ring rot. In: Compendium of Potato Diseases. ed. by W. J. Hooker, pp. 31-32. Am. Phytopathol. Soc. St. Paul, Mn.
- Mills, D., Russell, B. W. and Hanus, J. W. 1997. Specific detection of Clavibacter michiganensis subsp. sepedonicus by amplification of three unique DNA sequences isolated by subtraction hybridization. Phytopathology 87:853-861. https://doi.org/10.1094/PHYTO.1997.87.8.853
- Nanduri, V., Sorokulova, I. B., Samoylov, A. M., Simonian, A. L., Petrenko, V. A. and Vodyanoy, V. 2007. Phage as a molecular recognition element in biosensors immobilized by physical adsorption. Biosens. Bioelectron. 22:986-992. https://doi.org/10.1016/j.bios.2006.03.025
- Pastrik, K. 2000. Detection of Clavibacter michiganensis subsp. sepedonicus in potato tubers by multiplex PCR with coamplification of host DNA. Eur. J. Plant Pathol. 106:155-165. https://doi.org/10.1023/A:1008736017029
- Phillippy, A. M., Mason, J. A., Ayanbule, K., Sommer, D. D., Taviani, E., Huq, A., Colwell, R. R., Knight, I. T. and Salzberg, S. L. 2007. Comprehensive DNA signature discovery and validation. PLoS Comput. Biol. 3:e98. https://doi.org/10.1371/journal.pcbi.0030098
- Rademaker, J. and Janse, J. 1994. Detection and identification of Clavibacter michiganensis subsp. sepedonicus and Clavibacter michiganensis subsp. michiganensis by nonradioactive hybridization, polymerase chain reaction, and restriction enzyme analysis. Can. J. Microbiol. 40:1007-1018. https://doi.org/10.1139/m94-161
- Schaad, N., Berthier-Schaad, Y., Sechler, A. and Knorr, D. 1999. Detection of Clavibacter michiganensis subsp. sepedonicus in potato tubers by BIO-PCR and an automated real-time fluorescence detection system. Plant Dis. 83:1095-1100. https://doi.org/10.1094/PDIS.1999.83.12.1095
- Shabani, A., Zourob, M., Allain, B., Marquette, C. A., Lawrence, M. F. and Mandeville, R. 2008. Bacteriophage-modified microarrays for the direct impedimetric detection of bacteria. Anal. Chem. 80:9475-9482. https://doi.org/10.1021/ac801607w
- Singh, A., Poshtiban, S. and Evoy, S. 2013. Recent advances in bacteriophage based biosensors for food-borne pathogen detection. Sensors 13:1763-1786. https://doi.org/10.3390/s130201763
- Singh, A., Arutyunov, D., Szymanski, C. M. and Evoy, S. 2012. Bacteriophage based probes for pathogen detection. Analyst 137:3405-3421. https://doi.org/10.1039/c2an35371g
- Slack, S., Drennan, J., Westra, A., Gudmestad, N. and Oleson, A. 1996. Comparison of PCR, ELISA, and DNA hybridization for the detection of Clavibacter michiganensis subsp. sepedonicus in field-grown potatoes. Plant Dis. 80:519-524. https://doi.org/10.1094/PD-80-0519
- Slezak, T., Kuczmarski, T., Ott, L., Torres, C., Medeiros, D., Smith, J., Truitt, B., Mulakken, N., Lam, M., Vitalis, E., Zemla, A., Zhou, C. E. and Gardner, S. 2003. Comparative genomics tools applied to bioterrorism defence. Brief Bioinform 4:133-149. https://doi.org/10.1093/bib/4.2.133
- Smartt, A. E. and Ripp, S. 2011. Bacteriophage reporter technology for sensing and detecting microbial targets. Anal. Bioanal. Chem. 400:991-1007. https://doi.org/10.1007/s00216-010-4561-3
- Smietana, M., Bock, W. J., Mikulic, P., Ng, A., Chinnappan, R. and Zourob, M. 2011. Detection of bacteria using bacteriophages as recognition elements immobilized on long-period fiber gratings. Optics Express 19:7971-7978. https://doi.org/10.1364/OE.19.007971
- Whelan, J. A., Russell, N. B. and Whelan, M. A. 2003. A method for the absolute quantification of cDNA using real-time PCR. J. Immunol. Methods 278:261-269. https://doi.org/10.1016/S0022-1759(03)00223-0
- Wolf, J., Elphinstone, J., Stead, D., Metzler, M., Müller, P., Hukkanen, A. and Karjalainen, R. 2005. Epidemiology of Clavibacter michiganensis subsp. sepedonicus in relation to control of bacterial ring rot. Report 95. Plant Research International B. V., Wageningen.
- Xiang, L. and De Boer, S. H. 1995. Selection of polymerase chain reaction primers from an RNA intergenic spacer region for specific detection of Clavibacter michiganensis subsp. sepedonicus. Phytopathology 85:837-842. https://doi.org/10.1094/Phyto-85-837
- Zourob, M. and Ripp, S. 2010. Bacteriophage-based biosensors. In: Recognition receptors in biosensors, ed. by. M. Zourob. pp. 415-448. Springer, New York.
Cited by
- Development of SCAR markers for rapid and specific detection of Pseudomonas syringae pv. morsprunorum races 1 and 2, using conventional and real-time PCR vol.100, pp.8, 2016, https://doi.org/10.1007/s00253-016-7295-0