DOI QR코드

DOI QR Code

General characteristics of Antheraea yamamai silkworm cocoon cultured in Korea

천잠 누에고치의 일반 성상

  • Lee, Kwang-Gill (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Chung, Da-Eun (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Kim, Kee-Young (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Jo, You-Young (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Kim, Hyun-Bok (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Kim, Sung-Kuk (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Kweon, HaeYong (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA)
  • 이광길 (농촌진흥청 국립농업과학원 잠사양봉소재과) ;
  • 정다은 (농촌진흥청 국립농업과학원 잠사양봉소재과) ;
  • 김기영 (농촌진흥청 국립농업과학원 잠사양봉소재과) ;
  • 조유영 (농촌진흥청 국립농업과학원 잠사양봉소재과) ;
  • 김현복 (농촌진흥청 국립농업과학원 잠사양봉소재과) ;
  • 김성국 (농촌진흥청 국립농업과학원 잠사양봉소재과) ;
  • 권해용 (농촌진흥청 국립농업과학원 잠사양봉소재과)
  • Received : 2015.04.20
  • Accepted : 2015.04.29
  • Published : 2015.04.30

Abstract

Antheraea yamamai silkworm cocoon is considered as a natural biocompatible materials, but can not be used as medical resources due to its difficult processability. In this study, we examined the general characteristics including cocoon shell weight and structural and thermal properties of Antheraea yamamai silkworm cocoon. The cocoon shell weight and thickness of wild silkworm cocoon was 0.528 g and 0.424 mm, respectively. The cocoon has yellow-green color in outside cocoon but white in inner layer cocoon. Amino acid analysis showed that the main amino acid of Antheraea yamamai cocoon is alanine, glycine, serine, aspartic acid, tyrosine and arginine. X-ray diffractometry showed that strong diffraction peaks at $2{\theta}=16.8^{\circ}$, $20.4^{\circ}$, corresponded to ${\beta}$-sheet structure and sharp diffraction peaks at $2{\theta}=15.0^{\circ}$, $24.3^{\circ}$, $30.0^{\circ}$ due to the presence of calcium oxalate on cocoon surface. Antheraea yamamai cocoon was degraded at $370^{\circ}C$. These results might be used as basic information for development of non-textile materials using Anthereae yamamai silkworm cocoon.

국내에서 생산한 천잠 누에고치의 일반 특성을 고찰한 결과 국내산 천잠 누에고치는 연두색 고치를 지으며, 층상구조를 가지고 있었다. 천잠 누에고치는 외피는 연두색이었고 내피는 흰색을 나타내어 천잠 누에고치의 색상을 나타내는 색소 성분은 외피에 존재하였다. 천잠 누에고치는 고치층의 무게는 0.528 g, 견층두께는 0.424 mm로 측정되었다. 천잠 누에고치를 구성하는 주요 아미노산은 알라닌, 글리신, 세린, 아스파르트산, 티로산, 아르기닌 순으로 나타났으며, X-선 회절분석 결과 $2{\theta}=16.8^{\circ}$, $20.4^{\circ}$ 부근에서 강한 회절 피크와 $2{\theta}=15.0^{\circ}$, $24.3^{\circ}$, $30.0^{\circ}$ 부근에서 날카로운 회절 피크를 나타내었다. 천잠 누에고치는 폭이 $20{\mu}m$ 정도인 섬유가 적층된 구조를 가지고 있으며, 고치의 안쪽과 바깥쪽에 흰색 결정을 가지고 있었다. 천잠 누에고치의 최대 열분해 온도는 $370^{\circ}C$ 부근이었다. 이러한 천잠 누에고치에 대한 연구 결과는 향후 천잠 누에고치를 이용한 소재 개발의 기초 자료로 활용될 수 있을 것으로 기대한다.

Keywords

References

  1. Cho HY, Baik YA, Jeon SY, Kwak YH, Kweon HY, Jo YY, Lee KG, Park YH, Kang DC (2013) Growth and osteoblastic differentiation of mesenchymal stem cells on silk scaffolds. Int J Indust Entomol 27, 303-311. https://doi.org/10.7852/ijie.2013.27.2.303
  2. Georgieva V, Valaev L, Gyurova K (2013) Non-isothermal degradation kinetics of $CaCO_3$ from different origin. J Chem, 872981.
  3. Kang PD, Kim KY, Sung GB, Kim MJ, Ji SD, Kweon HY, Park KY, Shon BH (2012a) Breeding of DaeBakJam a high silk yielding silkworm variety for spring rearing season. J Seric Entomol Sci 50, 1-4.
  4. Kang PD, Kim KY, Sung GB, Kim MJ, Ji SD, Kweon HY, Park KY, Shon BH (2012b) Breeding of SooOkJam an artificial diet adaptable silkworm variety for spring rearing season. J Seric Entomol Sci 50, 5-9.
  5. Kang PD, Sung GB, Kim KY, Lee HS, Kim MJ, Ji SD, Hong IP, Kweon HY, Park KY, Lee KG, Sohn BH (2011) Breeding of HanSaengJam a parental sex-limited larval marking strain suitable for spring rearing season. Int J Indust Entomol 23, 179-182. https://doi.org/10.7852/ijie.2011.23.1.179
  6. Kato Y, Onuma Y, Sakurai K, Yamada H (1989) Role of light in the green pigmentation of cocoons of Antheraea yamamai (Leopidoptera Saturniidae). Appl Entomol Zool 24, 398-406. https://doi.org/10.1303/aez.24.398
  7. Kim J, Kim CH, Park CH, Seo JN, Kweon HY, Kang SW, Lee KG (2010) Comparison of methods for the repair of acute tympanic membrane perforations: silk patch vs paper patch. Wound Rep Regen 18, 132-138. https://doi.org/10.1111/j.1524-475X.2009.00565.x
  8. Kim KY, Sung GB, Kim MJ, Ji SD, Kweon HY, Park KY, Shon BH, Kang PD (2012) Breeding of WhangBoJam a sex-limited yellow silk silkworm variety suitable for spring rearing season. J Seric Entomol Sci 50, 63-67.
  9. Kim SK, Jo YY, Lee KG, Lee HS, Yeo JH, Kweon HY (2014) Preparation and characterization of silk beads for protein delivery system. Int J Indust Entomol 28, 66-70. https://doi.org/10.7852/ijie.2014.28.2.66
  10. Komatsu K (1980) Chemical and structural characteristics of wild cocoon and silk. pp. 353-377.
  11. Kweon HY, Jo YY, Lee KG, Kim HB, Yeo JH (2014) Silk polymer for medical applications. J Seric Entomol Sci 52, 89-95.
  12. Kweon HY, Kim SG, An JH, Shim HW, Yang BE, Kim JY, Jo YY, Yeo JH, Lee KG (2010) Silk fibroin membrane as guided bone regeneration in rat calvarial defects. Int J Indust Entomol 21, 175-179.
  13. Kweon HY, Lee KG, Park KY, Kang SW. Seok YS (2012) Degumming characteristics and color stability of GoldenSilk cocoon. Int J Indust Entomol 24, 1-5. https://doi.org/10.7852/ijie.2012.24.1.001
  14. Kweon HY, Park YH (1994) Structural characteristics and physical properties of wild silk fibers; Antheraea pernyi and Antheraea yamamai. Korean J Seric Sci 36, 138-146.
  15. Kweon HY, Park YH (1999) Structural and conformational changes of regenerated Antheraea pernyi silk fibroin films treated tith methanol solution. J Appl Polym Sci 73, 2887-2894. https://doi.org/10.1002/(SICI)1097-4628(19990929)73:14<2887::AID-APP12>3.0.CO;2-I
  16. Kweon HY, Park YH (2001) Dissolution and characterization of regenerated Antheraea pernyi silk fibroin. J Appl Polym Sci 82, 750-758. https://doi.org/10.1002/app.1901
  17. Luan XY, Wang Y, Duan X, Duan QY, Li MZ, Lu SZ, Zhang HX, Zang XG (2006) Attachment and growth of human bone marrow derived mesenchymal stem cells on regenerated Antheraea pernyi silk fibroin films. Biomed Mater 1, 181-187. https://doi.org/10.1088/1748-6041/1/4/001
  18. Minoura N, Aiba SI, Higuchi M, Gotoh Y, Tsukada M, Imai Y (1995) Attachment and growth of fibroblast cells on silk fibroin. Biochem Biophys Res Commun 208, 511-516. https://doi.org/10.1006/bbrc.1995.1368
  19. Ruoslahti E, Pierschbacher MD (1986) Arg-Gly-Asp: a versatile cell recognition signal. Cell 44, 517-518. https://doi.org/10.1016/0092-8674(86)90259-X
  20. Seok H, Lee SW, Kim SG, Seo DH, Kim HS, Kweon HY, Jo YY, Kang TY, Lee MJ, Chae WS (2013) The effect of silk membrane plus 3% 4-hexylresorcinol on guided bone generation in a rabbit calvarial defect model. Int J Indust Entomol 27, 209-217. https://doi.org/10.7852/ijie.2013.27.1.209
  21. Shin BS, Joen JY, Kim JH (2012) Cocoon characteristics of Antheraea pernyi silkworm reared in Korean oak field. Int J Ind Entomol 25, 205-208.
  22. Tsukada M (1986) Structural changes induced in tussah silk (Antheraea pernyi) fibroin films by immersion in methanol. J Polym Sci Pt B-Polym Phys 24, 1227-1232.
  23. Yamada H, Kato Y (2004) Green coloration of cocoons in Antheraea yamamai (Lepidoptera : Saturniidae): light-induced production of blue bilin in the larval heamolymph. J Insect Physiol 5, 393-401.
  24. Zhao CX, Wu XF, Zhang QA, Yang SQ, Li MZ (2011) Enzymatic degradation of Antheraea pernyi silk fibroin 3D scaffolds and fibers. Int J Biol Macromol 48, 249-255. https://doi.org/10.1016/j.ijbiomac.2010.11.004

Cited by

  1. Tensan Silk-Inspired Hierarchical Fibers for Smart Textile Applications vol.12, pp.7, 2018, https://doi.org/10.1021/acsnano.8b02430
  2. Water-Rinsed Nonmulberry Silk Film for Potential Tissue Engineering Applications vol.4, pp.2, 2015, https://doi.org/10.1021/acsomega.8b03542