DOI QR코드

DOI QR Code

Effect of Zinc on the Suspended Growth Biological Wastewater Treatment

부유 성장식 생물학적 폐수처리에 미치는 아연의 영향

  • Seo, Jeong-Beom (Department of Environmental & Energy Engineering, Anyang University) ;
  • Hwang, Chang-Min (Department of Environmental & Energy Engineering, Anyang University)
  • 서정범 (안양대학교 환경에너지공학과) ;
  • 황창민 (안양대학교 환경에너지공학과)
  • Received : 2015.04.01
  • Accepted : 2015.04.28
  • Published : 2015.04.30

Abstract

This study was performed to examine the effect of zinc on the biodegradability, nitrification, denitrification and oxygen uptake rate (OUR) using batch reactor and continuous flow stirred tank reactor (CSTR) of anaerobic/anoxic/oxic ($A^2/O$). The results of this study can be summarized as follows. In the case of the effect of zinc on organic treatment, zinc had no effect up to 12 mg/L with batch reactor but biodegradability was lowered when it was above 3.0 mg/L with CSTR. Concerning the case on nitrification and removal of nitrogen, nitrification rate was lowered when zinc was above 6.0 mg/L with batch reactor and removal rate of nitrogen was lowered when zinc was above 3.0 mg/L with CSTR. Removal rate of phosphorus was lowered when it was above 6.0 mg/L zinc with batch reactor and above 3.0 mg/L zinc with CSTR. In the case of OUR, it decreased as microbial activity was affected when zinc concentration was above 3.0 mg/L in CSTR.

본 연구에서는 회분식 실험 및 $A^2/O$ 공법의 연속식 실험으로 아연이 생분해, 산소 소모율, 질산화 및 탈질에 미치는 영향을 검토하였다. 본 연구의 결과를 요약하면 다음과 같다. 아연 영향 실험 결과 유기물 분해는 회분식 실험의 경우 아연 농도 12 mg/L까지 영향을 미치지 않았으며, 연속식 실험의 경우 아연 농도 3.0 mg/L 이상일 때 생분해성이 낮아졌다. 질산화 및 질소 제거의 경우 회분식은 아연 농도 6.0 mg/L 이상일 때 질산화율이 낮아졌으며, 연속식의 경우 아연 농도 3.0 mg/L 이상일 때는 질소 제거율이 낮아졌다. 인 제거의 경우 회분식은 아연 농도 6.0 mg/L, 연속식은 아연 농도 3.0 mg/L 이상일때 인 제거율이 낮아지는 것으로 나타났다. 산소 소모율의 경우 연속식의 아연 농도가 3.0 mg/L 이상이면 미생물 활성에 영향을 주어 산소 소모율이 낮아졌다.

Keywords

References

  1. Lester, J, N., Heavy Metals in Wastewater and Sludge Treatment Processes, In: Vol. II, Treatment and Disposal, CRC Press, Florida, USA.(1987).
  2. Lee, Y. W., Ong, S. K. and Sato, C., "Effects of heavy metal on nitrifying bacteria," Water Sci. Technol., 36, 69-74(1997).
  3. Painter, H. A., "A review of literature on inorganic nitrogen metabolism in microorganisms," Water Res., 4, 393-450(1970). https://doi.org/10.1016/0043-1354(70)90051-5
  4. Seo, J. B. and Hwang, C. M., "Effect of copper on the suspended growth biological wastewater treatment," J. Korean Soc. Environ. Eng., 35(7), 479-484(2013). https://doi.org/10.4491/KSEE.2013.35.7.479
  5. 櫻井敏郞 外, 活性汚泥法と維持管理, 産業用水調査會, (1980).
  6. Zhou, X. H., Yu, T., Shi, H. C. and Shi, H. M., "Temporal and spatial inhibitory effects of zinc and copper on wastewater biofilms from oxygen concentration profiles determined by microelectrodes," Water Res., 45, 953-959(2011). https://doi.org/10.1016/j.watres.2010.09.035
  7. Water Pollution Control Federation, Waste Water Treatment Plant Design, Manual of Practice, No. 8(1977).
  8. Adams, C. E. and Eckenfelder. W. W., "Nitrification design approach for high strength ammonia wastewaters," J. Water Pollut. Control Fed., 49, 413-420(1977).
  9. Benmoussa, H., Martin, G., Richard, Y., Leprince, A., "Inhibition of nitrification by heavy metal cations," Water Res., 20, 1333-1339(1986). https://doi.org/10.1016/0043-1354(86)90130-2
  10. Loveless, J. E. and Painter, H. A., "The influence of metal ion concentration and pH values on the growth of a nitrosomonas strain isolated from activated sludge," J. Gen. Microbiol., 52, 1-14(1968). https://doi.org/10.1099/00221287-52-1-1
  11. Ibrahim, A. M., "Heavy metal inhibition of resting nitrifying bacteria," Proceedings oh the 43rd Industrial Waste Conference, Purdue University, Lafayette, IN., Lewis Publishers, pp. 309-318(1989).
  12. Korean Department of Environment, Standard Methods of Water Quality(2001).
  13. APHA-AWWA-WEF, Standard Methods 19th ed., American Public Health Association(1995).