References
- Niemeyer, C. M., "Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science," Angew. Chem. Int. Ed., 40(22), 4128-4158(2001). https://doi.org/10.1002/1521-3773(20011119)40:22<4128::AID-ANIE4128>3.0.CO;2-S
- Navarro, E., Piccapietra, F., Wagner, B., Marconi, F., Kaegi, R., Odzak, N., Sigg, L. and Behra, R., "Toxicity of silver nanoparticles to Chlamydomonas reinhardtii," Environ. Sci. Technol., 42(23), 8959-8964(2008). https://doi.org/10.1021/es801785m
- Kim, J. S., Kuk, E., Yu, K. N., Kim, J. H., Park, S. J., Lee, H. J., Kim, S. H., Park, Y. K., Park, Y. H., Hwang, C. Y., Kim, Y. K., Lee, Y. S., Jeong, D. H. and Cho, M. H., "Antimicrobial effects of silver nanoparticles," Nanomed.-Nanotechnol. Biol. Med., 3(1), 95-101(2007). https://doi.org/10.1016/j.nano.2006.12.001
- Tolaymat, T. M., El Badawy, A. M., Genaidy, A., Scheckel, S. G., Luxton, T. P. and Suidan, M., "An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: A systematic review and critical appraisal of peer-reviewed scientific papers," Sci. Total Environ., 408(5), 999-1006(2010). https://doi.org/10.1016/j.scitotenv.2009.11.003
- Lim, M. H, Bae, S. J., Lee, Y. J., Lee, S. K. and Hwang, Y. S., "Aggregation Behavior of Silver and TiO2 Nanoparticles in Aqueous Environment," J. Korean Soc. Water Wastewater, 27(5), 571-579(2013). https://doi.org/10.11001/jksww.2013.27.5.571
- Huynh, K. A. and Kai, L. C., "Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions," Environ. Sci. Technol., 45(13), 5564-5571(2011). https://doi.org/10.1021/es200157h
- Mitrano, D. M., Rimmele, E., Wichser, A., Erni, R., Height, M. and Nowack, B., "Presence of Nanoparticles in Wash Water from Conventional Silver and Nano-silver Textiles," ACS nano, 8(7), 7208-7219(2014). https://doi.org/10.1021/nn502228w
- Farkas, J., Christian, P., Gallego-Urrea, J. A., Roos, N., Hassellov, M., Tollefsen, K. E. and Thomas, K. V., "Uptake and effects of manufactured silver nanoparticles in rainbow trout (Oncorhynchus mykiss) gill cells," Aquat. Toxicol., 101 (1), 117-125(2011). https://doi.org/10.1016/j.aquatox.2010.09.010
- He, D., Dorantes-Aranda, J. J. and Waite, T. D., "Silver Nano particle-Algae Interactions: Oxidative Dissolution, Reactive Oxygen Species Generation and Synergistic Toxic Effects," Environ. Sci. Technol., 46(16), 8731-8738(2012). https://doi.org/10.1021/es300588a
- Kiser, M. A., Ladner, D. A., Hristovski, K. D. and Westerhoff, P. K., "Nanomaterial transformation and association with fresh and freeze-dried wastewater activated sludge: implications for testing protocol and environmental fate," Environ. Sci. Technol., 46(13), 7046-7053(2012). https://doi.org/10.1021/es300339x
- Brar, S. K., Verma, M., Tyagi, R. D. and Surampalli, R. Y., "Engineered nanoparticles in wastewater and wastewater sludge-Evidence and impacts," Waste Manage., 30(3), 504-520(2010). https://doi.org/10.1016/j.wasman.2009.10.012
- Gondikas, A. P., Morris, A., Reinsch, B. C., Marinakos, S. M., Lowry, G. V. and Hsu-Kim, H., "Cysteine-induced modifications of zero-valent silver nanomaterials: implications for particle surface chemistry, aggregation, dissolution, and silver speciation," Environ. Sci. Technol., 46(13), 7037-7045 (2012). https://doi.org/10.1021/es3001757
- Umh, H. N., Roh, J. K., Lee, B. C., Park, S. M., Yi, J. H. and Kim, Y. H., "Case studies for nanomaterials exposure to environmental media," Korean Chem. Eng. Res., 50(6), 1056-1063(2012).
- Gottschalk, F., Ort, C., Scholz, R. W. and Nowack, B., "Engineered nanomaterials in rivers-Exposure scenarios for Switzerland at high spatial and temporal resolution," Environ. Pollut., 159(12), 3439-3445(2011). https://doi.org/10.1016/j.envpol.2011.08.023
- Kim, S. W., Lee, W. M., Shin, Y. J. and An, Y. J., "Ecotoxicity Studies of Photoactive Nanoparticles Exposed to Ultraviolet Light," J. Korean Soc. Environ. Eng., 34(1), 63-71(2012). https://doi.org/10.4491/KSEE.2012.34.1.063
- King, S. M. and Jarvie, H. P., "Exploring how organic matter controls structural transformations in natural aquatic nanocolloidal dispersions," Environ. Sci. Technol., 46(13), 6959-6967(2012). https://doi.org/10.1021/es2034087
- Badawy, A. M. E., Luxton, T. P., Silva, R. G., Scheckel, K. G., Suidan, M. T. and Tolaymat, T. M., "Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions," Environ. Sci. Technol., 44(4), 1260-1266(2010). https://doi.org/10.1021/es902240k
- Piccapietra, F., Sigg, L. and Behra, R., "Colloidal stability of carbonate-coated silver nanoparticles in synthetic and natural freshwater," Environ. Sci. Technol., 46(2), 818-825 (2011).
- Levard, C., Hotze, E. M., Lowry, G. V. and Brown Jr, G. E., "Environmental transformations of silver nanoparticles: impact on stability and toxicity," Environ. Sci. Technol., 46 (13), 6900-6914(2012). https://doi.org/10.1021/es2037405
-
Adegboyega, N. F., Sharma, V. K., Siskova, K., Zboril, R., Sohn, M., Schultz, B. J. and Banerjee, S., "Interactions of aqueous
$Ag^+$ with fulvic acids: mechanisms of silver nanoparticle formation and investigation of stability," Environ. Sci. Technol., 47(2), 757-764(2012). https://doi.org/10.1021/es302305f - Thio, B. J. R., Montes, M. O., Mahmoud, M. A., Lee, D. W., Zhou, D. and Keller, A. A., "Mobility of capped silver nanoparticles under environmentally relevant conditions," Environ. Sci. Technol., 46(13), 6985-6991(2011). https://doi.org/10.1021/es203596w
- Bian, S. W., Mudunkotuwa, I. A., Rupasinghe, T. and Grassian, V. H., "Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid," Langmuir, 27(10), 6059-6068(2011). https://doi.org/10.1021/la200570n
- Zhang, Y., Chen, Y., Westerhoff, P. and Crittenden, J., "Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles," Water Res., 43(17), 4249-4257 (2009). https://doi.org/10.1016/j.watres.2009.06.005
- Chen, K. L. and Elimelech, M., "Relating colloidal stability of fullerene (C60) nanoparticles to nanoparticle charge and electrokinetic properties," Environ. Sci. Technol., 43(19), 7270-7276(2009). https://doi.org/10.1021/es900185p
- Zhang, Y., Chen, Y., Westerhoff, P., Hristovski, K. and Crittenden, J. C., "Stability of commercial metal oxide nanoparticles in water," Water Res., 42(8), 2204-2212(2008). https://doi.org/10.1016/j.watres.2007.11.036
- Petosa, A. R., Jaisi, D. P., Quevedo, I. R., Elimelech, M. and Tufenkji, N., "Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions," Environ. Sci. Technol., 44(17), 6532-6549 (2010). https://doi.org/10.1021/es100598h
- Liu, J., Legros, S., Von der Kammer, F. and Hofmann, T., "Natural organic matter concentration and hydrochemistry influence aggregation kinetics of functionalized engineered nanoparticles," Environ. Sci. Technol., 47(9), 4113-4120(2013). https://doi.org/10.1021/es302447g
- Li, X., Lenhart, J. J. and Walker, H. W., "Aggregation kinetics and dissolution of coated silver nanoparticles," Langmuir, 28(2), 1095-1104(2011). https://doi.org/10.1021/la202328n
- Li, X. and Lenhart, J. J., "Aggregation and dissolution of silver nanoparticles in natural surface water," Environ. Sci. Technol., 46(10), 5378-5386(2012). https://doi.org/10.1021/es204531y
- Liu, J. and Hurt, R. H., "Ion release kinetics and particle persistence in aqueous nano-silver colloids," Environ. Sci. Technol., 44(6), 2169-2175(2010). https://doi.org/10.1021/es9035557
- Dobias, J. and Bernier-Latmani, R., "Silver release from silver nanoparticles in natural waters," Environ. Sci. Technol., 47(9), 4140-4146(2013). https://doi.org/10.1021/es304023p
- Pace, H. E., Rogers, N. J., Jarolimek, C., Coleman, V. A., Higgins, C. P. and Ranville, J. F., "Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry," Anal. Chem., 83(24), 9361-9369(2011). https://doi.org/10.1021/ac201952t
- Domingos, R. F., Baalousha, M. A., Ju-Nam, Y., Reid, M. M., Tufenkji, N., Lead, J. R., Leppard, G. G. and Wilkinson, K. J., "Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes," Environ. Sci. Technol., 43(19), 7277-7284(2009). https://doi.org/10.1021/es900249m
- Filella, M., Zhang, J., Newman, M. E. and Buffle, J., "Analytical applications of photon correlation spectroscopy for size distribution measurements of natural colloidal suspensions: capabilities and limitations," Colloids Surf., A, 120(1), 27-46(1997). https://doi.org/10.1016/S0927-7757(96)03677-1
- Holthoff, H., Egelhaaf, S. U., Borkovec, M., Schurtenberger, P. and Sticher, H., "Coagulation rate measurements of colloidal particles by simultaneous static and dynamic light scattering," Langmuir, 12(23), 5541-5549(1996). https://doi.org/10.1021/la960326e
- Chen, K. L., Mylon, S. E. and Elimelech, M., "Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes," Environ. Sci. Technol., 40 (5), 1516-1523(2006). https://doi.org/10.1021/es0518068
- Chen, K. L. and Elimelech, M., "Aggregation and deposition kinetics of fullerene (C60) nanoparticles," Langmuir, 22(26), 10994-11001(2006). https://doi.org/10.1021/la062072v
- Liu, J., Legros, S., Ma, G., Veinot, J. G., Von der Kammer, F. and Hofmann, T., "Influence of surface functionalization and particle size on the aggregation kinetics of engineered nanoparticles," Chemosphere, 87(8), 918-924(2012). https://doi.org/10.1016/j.chemosphere.2012.01.045
- Kaszuba, M., McKnight, D., Connah, M. T., McNeil-Watson, F. K. and Nobbmann, U., "Measuring sub nanometre sizes using dynamic light scattering," J. Nanopart. Res., 10(5), 823-829(2008). https://doi.org/10.1007/s11051-007-9317-4
- Camli, S. T., Buyukserin, F., Balci, O. and Budak, G. G., "Size controlled synthesis of sub-100nm monodisperse poly (methylmethacrylate) nanoparticles using surfactant-free emulsion polymerization," J. Colloid Interface Sci., 344(2), 528-532(2010). https://doi.org/10.1016/j.jcis.2010.01.041
- Li, Y., Zhang, Q., Zhao, X., Yu, P., Wu, L. and Chen, D., "Enhanced electrochemical performance of polyaniline/ sulfonated polyhedral oligosilsesquioxane nanocomposites with porous and ordered hierarchical nanostructure," J. Mater. Chem., 22(5), 1884-1892(2012). https://doi.org/10.1039/C1JM13359D
- Li, X. A., Lenhart, J. J. and Walker, H. W., "Dissolution-Accompanied Aggregation Kinetics of Silver Nanoparticles," Langmuir, 26(22), 16690-16698(2010). https://doi.org/10.1021/la101768n
- Balnois, E., Wilkinson, K. J., Lead, J. R. and Buffle, J., "Atomic force microscopy of humic substances: effects of pH and ionic strength," Environ. Sci. Technol., 33(21), 3911-3917(1999). https://doi.org/10.1021/es990365n
- Mylon, S. E., Chen, K. L. and Elimelech, M., "Influence of natural organic matter and ionic composition on the kinetics and structure of hematite colloid aggregation: Implications to iron depletion in estuaries," Langmuir, 20(21), 9000-9006 (2004). https://doi.org/10.1021/la049153g
- Spark, K. M. and Swift, R. S., "Effect of soil composition and dissolved organic matter on pesticide sorption," Sci. Total Environ., 298(1), 147-161(2002). https://doi.org/10.1016/S0048-9697(02)00213-9
- Gottschalk, F., Sun, T. and Nowack, B., "Environmental concentrations of engineered nanomaterials: Review of modeling and analytical studies," Environ. Pollut., 181, 287-300(2013). https://doi.org/10.1016/j.envpol.2013.06.003