DOI QR코드

DOI QR Code

An analytical study on the nonlinear vibration of a double-walled carbon nanotube

  • Hajnayeb, Ali (Mechanical Engineering Department, Engineering Faculty, Shahid Chamran University of Ahvaz) ;
  • Khadem, S.E. (Mechanical & Aerospace Engineering Department, Tarbiat Modares University)
  • Received : 2014.09.09
  • Accepted : 2015.04.16
  • Published : 2015.06.10

Abstract

In this paper, free vibrations of a clamped-clamped double-walled carbon nanotube (DWNT) under axial force is studied. By utilizing Euler-Bernoulli beam theory, each layer of DWNT is modeled as a beam. In this analysis, nonlinear form of interlayer van der Waals (vdW) forces and nonlinearities aroused from mid-plane stretching are also considered in the equations of motion. Further, direct application of multiple scales perturbation method is utilized to solve the obtained equations and to analyze free vibrations of the DWNT. Therefore, analytical expressions are found for vibrations of each layer. Linear and nonlinear natural frequencies of the system and vibration amplitude ratios of inner to outer layers are also obtained. Finally, the results are compared with the results obtained by Galerkin method.

Keywords

References

  1. Besseghier, A.H., Bousahla, A.A., Tounsi, A. and Benzair, A. (2015), "Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., 3(1), 29-37. https://doi.org/10.12989/anr.2015.3.1.029
  2. Buks, E. and B. Yurke (2006), "Mass detection with nonlinear nanomechanical resonator", Phys. Rev. E, 74(4), 046619. https://doi.org/10.1103/PhysRevE.74.046619
  3. Dequesnes, M., Tang, Z. and Aluru, N.R. (2004), "Static and dynamic analysis of carbon nanotube-based switches", J. Eng. Mater. Tech., 126, 230-237. https://doi.org/10.1115/1.1751180
  4. Elishakoff, I. and Pentaras, D. (2009), "Fundamental natural frequencies of double-walled carbon nanotubes", J. Sound Vib., 322, 652-664. https://doi.org/10.1016/j.jsv.2009.02.037
  5. Elishakoff, I., Pentaras, D., Dujat, K., Versaci, C., Muscolino, G., Storch, J., Bucas, S., Challamel, N., Natsuki, T., Zhang, Y., Wang, C.M. and Ghyselinck, G. (2012), Carbon NAanotubes and Nanosensors, ISTE-WILEY, London.
  6. Fu, Y.M., Hong, J.W. and Wang, X.Q. (2006), "Analysis of nonlinear vibration for embedded carbon nanotubes", J. Sound Vib., 296, 746-756. https://doi.org/10.1016/j.jsv.2006.02.024
  7. Hajnayeb, A. and Khadem, S. (2012), "Nonlinear vibration and stability analysis of a double-walled carbon nanotube under electrostatic actuation", J. Sound Vib., 331(10), 2443-2456. https://doi.org/10.1016/j.jsv.2012.01.008
  8. Hajnayeb, A., Khadem, S. and Zamanian, M. (2011), "Thermoelastic damping of a double-walled carbon nanotube under electrostatic force", Micro Nano Lett., 6(8), 698-703. https://doi.org/10.1049/mnl.2011.0193
  9. Khosrozadeh, A. and Hajabasi, M.A. (2012), "Free vibration of embedded double-walled carbon nanotubes considering nonlinear interlayer van der Waals forces", Appl. Math. Model., 36(3), 997-1007. https://doi.org/10.1016/j.apm.2011.07.063
  10. Kiani, K. (2013), "Vibration analysis of elastically restrained double-walled carbon nanotubes on elastic foundation subjected to axial load using nonlocal shear deformable beam theories", Int. J. Mech. Sci., 68, 16-34. https://doi.org/10.1016/j.ijmecsci.2012.11.011
  11. Leissa, A.W. and Qatu, M.S. (2011), Vibration of Continuous Systems, McGraw Hill Professional.
  12. Nayfeh, A.H. (1981), Introduction to Perturbation Techniques, New York, Wiley-Interscience.
  13. Postma, H.W.C., Kozinsky, I., Husain, A. and Roukes, M.L. (2005), "Dynamic range of nanotube- and nanowire-based electromechanical systems", Appl. Phys. Lett., 86(22), 223105.
  14. Simsek, M. (2011), "Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., 11(1), 59-76. https://doi.org/10.12989/scs.2011.11.1.059
  15. Taira, H., Shima, H., Umeno, Y. and Sato, M. (2013), "Radial deformation and band-gap modulation of pressurized carbon nanotubes", Couple. Syst. Mech., 2(2), 147-157. https://doi.org/10.12989/csm.2013.2.2.147
  16. Thomsen, J.J. (2003), Vibrations and Stability: Advanced Theory Analysis and Tools, Berlin Heidelberg, Springer-Verlag.
  17. Wang, C.M., Tan, V.B.C. and Zhang, Y.Y. (2006), "Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes", J. Sound Vib., 294, 1060-1072. https://doi.org/10.1016/j.jsv.2006.01.005
  18. Wang, Q. and Varadan, V.K. (2006), "Vibration of carbon nanotubes studied using nonlocal continuum mechanics", Smart Mater. Struct., 15, 659-666. https://doi.org/10.1088/0964-1726/15/2/050
  19. Wang, X. and Cai, H. (2006), "Effects of initial stress on non-coaxial resonance of multi-wall carbon nanotubes", Acta Materialia, 54, 2067-2074. https://doi.org/10.1016/j.actamat.2005.12.039
  20. Wang, Y.C., Wu, C., Chen, C. and Yang, D. (2014), "Molecular dynamics studies of interaction between hydrogenand carbon nano-carriers", Couple. Syst. Mech., 3(4), 329-344. https://doi.org/10.12989/csm.2014.3.4.329
  21. Xu, K., Aifantis, E.C. and Yan, Y. (2008), "Vibrations of double-walled carbon nanotubes with different boundary conditions between inner and outer tubes", J. Appl. Mech., 75(2), 021013. https://doi.org/10.1115/1.2793133
  22. Xu, K.Y., Guo, X.N. and Ru, C.Q. (2006), "Vibration of a double-walled carbon nanotube aroused by nonlinear intertube van der Waals forces", J. Appl. Phys., 99(6), 064303. https://doi.org/10.1063/1.2179970
  23. Yan, Y., Wang, W. and Zhang, L. (2011), "Applied multiscale method to analysis of nonlinear vibration for double-walled carbon nanotubes", Appl. Math. Model., 35, 2279-2289. https://doi.org/10.1016/j.apm.2010.11.035
  24. Yang, J., Ke, L. and Kitipornchai, S. (2010), "Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory", Physica E: Low Dimen. Syst. Nanostruct., 42(5), 1727-1735. https://doi.org/10.1016/j.physe.2010.01.035
  25. Yoon, J., Ru, C.Q. and Mioduchowski, A. (2002), "Noncoaxial resonance of an isolated multiwall carbon nanotube", Phys. Rev. B, 66(23), 233402. https://doi.org/10.1103/PhysRevB.66.233402
  26. Zhang, Y., Liu, G. and Han, H. (2005), "Transverse vibrations of double-walled carbon nanotubes under compressive axial load", Phys. Lett. A, 340, 258-266. https://doi.org/10.1016/j.physleta.2005.03.064

Cited by

  1. Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept vol.20, pp.5, 2016, https://doi.org/10.12989/scs.2016.20.5.963
  2. Free vibration analysis of a piezoelectric nanobeam using nonlocal elasticity theory vol.61, pp.5, 2015, https://doi.org/10.12989/sem.2017.61.5.617
  3. Load transfer and energy absorption in transversely compressed multi-walled carbon nanotubes vol.6, pp.3, 2015, https://doi.org/10.12989/csm.2017.6.3.273
  4. Finite element modeling of the vibrational behavior of multi-walled nested silicon-carbide and carbon nanotubes vol.64, pp.3, 2015, https://doi.org/10.12989/sem.2017.64.3.329
  5. Buckling response with stretching effect of carbon nanotube-reinforced composite beams resting on elastic foundation vol.67, pp.2, 2018, https://doi.org/10.12989/sem.2018.67.2.125
  6. Analysis of boundary conditions effects on vibration of nanobeam in a polymeric matrix vol.67, pp.5, 2015, https://doi.org/10.12989/sem.2018.67.5.517
  7. Small-scale effect on the forced vibration of a nano beam embedded an elastic medium using nonlocal elasticity theory vol.6, pp.1, 2019, https://doi.org/10.12989/aas.2019.6.1.001
  8. Static and Dynamic Behavior of Nanotubes-Reinforced Sandwich Plates Using (FSDT) vol.57, pp.None, 2015, https://doi.org/10.4028/www.scientific.net/jnanor.57.117
  9. Geometrically nonlinear dynamic analysis of FG graphene platelets-reinforced nanocomposite cylinder: MLPG method based on a modified nonlinear micromechanical model vol.35, pp.1, 2020, https://doi.org/10.12989/scs.2020.35.1.077
  10. Theoretical impact of Kelvin's theory for vibration of double walled carbon nanotubes vol.8, pp.4, 2015, https://doi.org/10.12989/anr.2020.8.4.307