References
- ANSYS (1997), Swanson Analysis Systems, Swanson J. ANSYS 5.4, U.S.A.
- Akgoz, B. and Civalek, O. (2014), "Shear deformation beam models for functionally graded microbeams with new shear correction factors", Compos. Struct., 112, 214-225. https://doi.org/10.1016/j.compstruct.2014.02.022
- Aydogdu, M. and Taskin, V. (2007), "Free vibration analysis of functionally graded beams with simply supported edges", Mater. Des., 28(5),1651-6. https://doi.org/10.1016/j.matdes.2006.02.007
- Atmane, H.A., Tounsi, A., Ziane, N. and Mechab, I. (2011), "Mathematical solution for free vibration of sigmoid functionally graded beams with varying cross-section", Steel Compos. Struct., 11(6), 489-504. https://doi.org/10.12989/scs.2011.11.6.489
- Bouremana, M., Houari, M.S.A., Tounsi, A., Kaci, A. and Bedia, E.A. (2013), "A new first shear deformation beam theory based on neutral surface position for functionally graded beams", Steel Compos. Struct., 15(5), 467-479. https://doi.org/10.12989/scs.2013.15.5.467
- Cetin, D. and Simsek, M. (2011), "Free vibration of an axially functionally graded pile with pinned ends embedded in Winkler-Pasternak elastic medium", Struct. Eng. Mech., 40(4), 583-594. https://doi.org/10.12989/sem.2011.40.4.583
- Chakraborty, A., Gopalakrishnan, S. and Reddy, J.N. (2003), "A new beam finite element for the analysis of functionally graded materials", Int. J. Mech. Sci., 45, 519-539. https://doi.org/10.1016/S0020-7403(03)00058-4
- Chakraborty, A. and Gopalakrishnan, S. (2003), "A spectrally formulated finite element for wave propagation analysis in functionally graded beams", Int. J. Solid. Struct., 40(10), 2421-2448. https://doi.org/10.1016/S0020-7683(03)00029-5
- Ching, H.K. and Yen, S.C. (2005), "Meshless local Petrov-Galerkin analysis for 2D functionally graded elastic solids under mechanical and thermal loads", J. Compos. Part B. Eng., 36, 223-240. https://doi.org/10.1016/j.compositesb.2004.09.007
- Darilmaz, K. (2012), "Analysis of sandwich plates: a three-dimensional assumed stress hybrid finite element", J. Sandw. Struct. Mater., 14(4), 487-501. https://doi.org/10.1177/1099636212443916
- Darilmaz, K. (2011), "Influence of aspect ratio and fibre orientation on the stability of simply supported orthotropic skew plates", Steel Compos. Struct., 11(5), 359-374. https://doi.org/10.12989/scs.2011.11.5.359
- Darilmaz, K. (2015), "Vibration analysis of functionally graded material (FGM) grid systems", Steel Compos. Struct., 18(2), 395-408. https://doi.org/10.12989/scs.2015.18.2.395
- Giunta, G., Koutsawa, Y., Belouettar, S. and Calvi, A. (2014), "A dynamic analysis of three-dimensional functionally graded beams by hierarchical models", Smart Struct. Syst., 13(4), 637-657. https://doi.org/10.12989/sss.2014.13.4.637
- Kapuria, S., Bhattacharyya, M. and Kumar, A.N. (2008), "Bending and free vibration response of layered functionally graded beams: a theoretical model and its experimental validation", Compos. Struct., 82(3), 390-402. https://doi.org/10.1016/j.compstruct.2007.01.019
- Kim, J. and Paulino, G.H. (2002), "Finite element evaluation of mixed mode stress intensity factors in functionally graded materials", Int. J. Numer. Meth. Eng., 53(8), 1903-1935. https://doi.org/10.1002/nme.364
- Kocaturk, T. and Akbas, S.D. (2013), "Thermal post-buckling analysis of functionally graded beams with temperature-dependent physical properties", Steel Compos. Struct., 15(5), 481-505. https://doi.org/10.12989/scs.2013.15.5.481
- Li, X.F. (2008), "A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams", J. Sound Vib., 318(4-5), 1210-1229. https://doi.org/10.1016/j.jsv.2008.04.056
- Li, S.R. and Batra, R.C. (2013), "Relations between buckling loads of functionally graded Timoshenko and homogeneous Euler-Bernoulli beams", Compos. Struct., 95, 5-9. https://doi.org/10.1016/j.compstruct.2012.07.027
- Lu, C.F. and Chen, W.Q. (2005), "Free vibration of orthotropic functionally graded beams with various end conditions", Struct. Eng. Mech., 20(4), 465-476. https://doi.org/10.12989/sem.2005.20.4.465
- Lu, C.F., Chen, W.Q., Xu, R.Q. and Lim, C.W. (2008), "Semi-analytical elasticity solutions for bi-directional functionally graded beams", Int. J. Solid. Struct., 45, 258-275. https://doi.org/10.1016/j.ijsolstr.2007.07.018
- Pian, T.H.H. and Chen, D.P. (1983), "On the suppression of zero energy deformation modes", Int. J. Numer. Meth. Eng., 19, 1741-1752. https://doi.org/10.1002/nme.1620191202
- Qian, L.F. and Ching, H.K. (2004), "Static and dynamic analysis of 2D functionally graded elasticity by using meshless local Petrov-Galerkin method", J. Chinese Inst. Eng., 27, 491-503. https://doi.org/10.1080/02533839.2004.9670899
- Sanjay Anandrao, K., Gupta, R.K., Ramchandran, P. and Venkateswara Rao, G. (2012), "Non-linear free vibrations and post- buckling analysis of shear flexible functionally graded beams", Struct. Eng. Mech., 44(3), 339-361. https://doi.org/10.12989/sem.2012.44.3.339
- Sankar, B.V. (2001), "An elasticity solution for functionally graded beams", Compos. Sci. Technol., 61(5), 689-696. https://doi.org/10.1016/S0266-3538(01)00007-0
- Simsek, M. and Reddy, J.N. (2013), "A unified higher order beam theory for buckling of a functionally graded microbeam embedded in elastic medium using modified couple stress theory", Compos. Struct., 101, 47-58. https://doi.org/10.1016/j.compstruct.2013.01.017
- Simsek, M. (2009), "Static analysis of a functionally graded beam under a uniformly distributed load by Ritz method", Int. J. Eng. Appl. Sci., 1(3), 1-11.
- Simsek, M. and Kocaturk, T. (2009), "Free and forced vibration of a functionally graded beam subjected to a concentrated moving harmonic load", Compos. Struct., 90, 465-473. https://doi.org/10.1016/j.compstruct.2009.04.024
- Simsek, M. (2010), "Vibration analysis of a functionally graded beam under a moving mass by using different beam theories", Compos. Struct., 92, 904-917. https://doi.org/10.1016/j.compstruct.2009.09.030
- Tajalli, S.A., Rahaeifard, M., Kahrobaiyan, M.H., Movahhedy, M.R., Akbari, J. and Ahmadian, M.T. (2013), "Mechanical behavior analysis of size-dependent micro-scaled functionally graded Timoshenko beams by strain gradient elasticity theory", Compos. Struct., 102, 72-80. https://doi.org/10.1016/j.compstruct.2013.03.001
- Wakashima, K., Hirano, T. and Niino, M. (1990), "Space applications of advanced structural materials", ESA, SP-303, 97.
- Xiang, H.J. and Yang, J. (2007), "Free and forced vibration of a laminated FGM Timoshenko beam of variable thickness under heat conduction", J. Compos. Part B, 39(2), 292-303.
- Ying, J., Lu, C.F. and Chen, W.Q. (2008), "Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations", Compos. Struct., 84(3), 209-219. https://doi.org/10.1016/j.compstruct.2007.07.004
- Yang, J. and Chen, Y. (2008), "Free vibration and buckling analyses of functionally graded beams with edge cracks", Compos. Struct., 83(1), 48-60. https://doi.org/10.1016/j.compstruct.2007.03.006
- Yang, J., Chen, Y., Xiang, Y. and Jia, X.L. (2008), "Free and forced vibration of cracked inhomogeneous beams under an axial force and a moving load", J. Sound Vib., 312(1-2), 166-181. https://doi.org/10.1016/j.jsv.2007.10.034
- Zhong, Z. and Yu, T. (2007), "Analytical solution of a cantilever functionally graded beam", Compos. Sci. Technol., 67(3-4), 481-488. https://doi.org/10.1016/j.compscitech.2006.08.023
Cited by
- Stability and free vibration analysis of tapered sandwich columns with functionally graded core and flexible connections pp.1869-5590, 2018, https://doi.org/10.1007/s13272-018-0311-6
- A new plate model for vibration response of advanced composite plates in thermal environment vol.67, pp.4, 2015, https://doi.org/10.12989/sem.2018.67.4.369
- A novel hyperbolic plate theory including stretching effect for free vibration analysis of advanced composite plates in thermal environments vol.75, pp.2, 2020, https://doi.org/10.12989/sem.2020.75.2.193