Acknowledgement
Supported by : Natural Science Foundation of China
References
- Anna, V. and Renato, V. (2004), "Experimental investigation and numerical modeling of carbonation process in reinforced concrete structures", Cement Concrete Res., 34(4),571-579. https://doi.org/10.1016/j.cemconres.2003.09.009
- Assie, S., Escadeillas, G. and Waller, V. (2007), "Estimates of self-compacting concrete 'potential'durability", Constr. Build. Mater., 21(10), 1909-1917. https://doi.org/10.1016/j.conbuildmat.2006.06.034
- Bary, B. and Sellier, A. (2004), "Coupled moisture-carbon dioxide-calcium transfer model for carbonation of concrete", Cement Concrete Res., 34(10), 1859-1872. https://doi.org/10.1016/j.cemconres.2004.01.025
- Bernhardt, C. (1956), "Hardening of concrete at different temperatures", RILEM Symposium on Winter Concreting, Copenhagen, Danish Institute for Building Research, Session B-II1956.
- Brunauer, S., Skalny, J. and Bodor, E.E. (1969), "Adsorption on nonporous solids", J. Colloid Interf. Sci., 30(4), 546-552. https://doi.org/10.1016/0021-9797(69)90423-8
- Chang, C.F. and Chen, J.W. (2006), "The experimental investigation of concrete carbonation depth", Cement Concrete Res., 36(9), 1760-1767. https://doi.org/10.1016/j.cemconres.2004.07.025
- Design Code (1993), CEB-FIP Model Code 1990, Switzerland.
- Demis, S. and Papadakis, V.G. (2012), "A software-assisted comparative assessment of the effect of cement type on concrete carbonation and chloride ingress", Comput. Concr., 10(4), 391-407. https://doi.org/10.12989/cac.2012.10.4.391
- Design Code (2006), Conventional vibrated concrete standard sand, stone quality and test method, Chinese Standard JGJ52-2006, Beijing.
- Design Code (2009), Standard for test methods of long-term performance and durability of ordinary concrete, Chinese Standard GB/T50082-2009, Beijing.
- Fu, C.Q., Jin, X.Y., Jin, N.G., Zhao, Y.B. and Ge, F. (2011), "Long age mechanical properties and application of self-compacting concrete", Adv. Mater., 224, 142-146. https://doi.org/10.4028/www.scientific.net/AMR.224.142
- Fu, C.Q., Ma, Q.Y., Jin, X.Y., Shah, A. and Tian, Y. (2014), "Fracture property of steel fiber reinforced concrete at early age", Comput. Concr., 13(1), 31-47. https://doi.org/10.12989/cac.2014.13.1.031
- Fu, C.Q., Jin, X., Ye, H. and Jin, N. (2015), "Theoretical and experimental investigation of loading effects on chloride diffusion in saturated concrete", J. Adv. Concr. Tech., 13(1), 30-43. https://doi.org/10.3151/jact.13.30
- Halamickova, P., Detwiler, R.J., Bentz, D.P. and Garboczi, E.J. (1995), "Water permeability and chloride ion diffusion in Portland cement mortars: relationship to sand content and critical pore diameter", Cement Concrete Res., 25(4), 790-802. https://doi.org/10.1016/0008-8846(95)00069-O
-
Hussain, R.R. (2011), "Enhanced mass balance Tafel slope model for computer based FEM computation of corrosion rate of steel reinforced concrete coupled with
$CO_2$ transport", Comput. Concr., 8(2), 177-192. https://doi.org/10.12989/cac.2011.8.2.177 - Islam, M.N., Zain, M.F.M. and Basri, H. (2005), "An expert system for making durable concrete for chemical exposure", Comput. Concr., 2(4), 293-307. https://doi.org/10.12989/cac.2005.2.4.293
- Kropp, J. (1983), "Karbonatisierung und Transportvorgange in Zementstein: na".
- Laidler, K.J. (1984), "The development of the Arrhenius equation", J. Chem. Educ., 61(6), 494. https://doi.org/10.1021/ed061p494
- Loser, R. and Leemann, A. (2009), "Shrinkage and restrained shrinkage cracking of self-compacting concrete compared to conventionally vibrated concrete", Mater. Struct., 42(1), 71-82. https://doi.org/10.1617/s11527-008-9367-9
- Moaveni, S. (2003), Finite Element Analysis: Theory and Application with ANSYS, Pearson Education, India.
- Ouchi, M., Nakamura, S.A., Osterberg, T., Hallberg, S. and Lwin, M. (2003), "Applications of self-compacting concrete in Japan", Proceedings of the Europe and the United States. International Symposium on High Performance Computing (ISHPC).
- Papadakis, V.G., Efstathiou, M.P. and Apostolopoulos, C.A. (2007), "Computer-aided approach of parameters influencing concrete service life and field validation", Comput. Concr., 4(1), 1-18. https://doi.org/10.12989/cac.2007.4.1.001
- Papadakis, V.G., Vayenas, C.G. and Fardis, M.N. (1991), "Experimental investigation and mathematical modeling of the concrete carbonation problem", Chem Eng Sci., 46(5),1333-8. https://doi.org/10.1016/0009-2509(91)85060-B
- Saeki, T., Ohga, H. and Nagataki, S. (1991), "Mechanism of carbonation and prediction of carbonation process of concrete", Concrete library - JSCE, 17, 23-36.
- Saetta, A.V., Schrefler, B.A. and Vitaliani, R.V. (1993), "The carbonation of concrete and the mechanism of moisture, heat and carbon dioxide flow through porous materials", Cement Concrete Res., 23(4), 761-772. https://doi.org/10.1016/0008-8846(93)90030-D
- Saetta, A.V. and Vitaliani, R.V. (2004), "Experimental investigation and numerical modeling of carbonation process in reinforced concrete structures: Part I: Theoretical formulation", Cement Concrete Res., 34(4),571-9. https://doi.org/10.1016/j.cemconres.2003.09.009
- Song, H.W. and Kwon, S.J. (2007), "Permeability characteristics of carbonated concrete considering capillary pore structure", Cement Concrete Res., 37(6), 909-915. https://doi.org/10.1016/j.cemconres.2007.03.011
- Valcuende, M. and Parra, C. (2010), "Natural carbonation of self-compacting concretes", Constr. Build Mater., 24(5), 848-853. https://doi.org/10.1016/j.conbuildmat.2009.10.021
- Xi, Y., Bazant, Z.P. and Jennings, H.M. (1994), "Moisture diffusion in cementitious materials Adsorption isotherms", Adv. Cement Mater., 1(6), 248-257. https://doi.org/10.1016/1065-7355(94)90033-7
- Ye, H., Jin, N., Jin, X. and Fu, C. (2012), "Model of chloride penetration into cracked concrete subject to drying-wetting cycles", Constr. Build. Mater., 36, 259-269. https://doi.org/10.1016/j.conbuildmat.2012.05.027
- Ye, H., Tian, Y., Jin, N., Jin, X. and Fu, C. (2013), "Influence of cracking on chloride diffusivity and moisture influential depth in concrete subjected to simulated environmental conditions", Constr. Build. Mater., 47, 66-79. https://doi.org/10.1016/j.conbuildmat.2013.04.024
- Ye, H., Fu, C., Jin, N. and Jin, X. (2015), "Influence of flexural loading on chloride ingress in concrete subjected to cyclic drying-wetting condition", Comput. Concr., 15(2), 183-199. https://doi.org/10.12989/cac.2015.15.2.183
- Yoon, I.S. (2009), "Simple approach to calculate chloride diffusivity of concrete considering carbonation", Comput. Concr., 6(1), 1-18. https://doi.org/10.12989/cac.2009.6.1.001
- Zhang, S.P. and Zhao, B.H. (2012), "Research on chloride ion diffusivity of concrete subjected to CO2 environment", Comput. Concr., 10(3), 219-229 https://doi.org/10.12989/cac.2012.10.3.219
Cited by
- Chloride penetration in concrete exposed to cyclic drying-wetting and carbonation vol.112, 2016, https://doi.org/10.1016/j.conbuildmat.2016.02.194
- Influence of carbonation on “maximum phenomenon” in surface layer of specimens subjected to cyclic drying-wetting condition vol.103, 2018, https://doi.org/10.1016/j.cemconres.2017.10.005
- Self-terminated carbonation model as an useful support for durable concrete structure designing vol.63, pp.1, 2015, https://doi.org/10.12989/sem.2017.63.1.055
- Prediction of Carbonation Progress in Concrete Containing Calcareous Fly Ash Co-Binder vol.12, pp.17, 2015, https://doi.org/10.3390/ma12172665
- Influence of carbonation on chloride penetration of pastes under cyclic wetting-drying conditions vol.33, pp.3, 2021, https://doi.org/10.1680/jadcr.19.00047
- Study on diffusion of oxygen in coral concrete under different preloads vol.319, pp.None, 2022, https://doi.org/10.1016/j.conbuildmat.2021.126147