DOI QR코드

DOI QR Code

Modeling of unilateral effect in brittle materials by a mesoscopic scale approach

  • Pituba, Jose J.C. (Department of Civil Engineering, Federal University of Goias) ;
  • Neto, Eduardo A. Souza (Civil and Computational Engineering Centre, School of Engineering, Swansea University)
  • 투고 : 2013.04.25
  • 심사 : 2015.01.24
  • 발행 : 2015.05.25

초록

This work deals with unilateral effect of quasi-brittle materials, such as concrete. For this propose, a two-dimensional meso-scale model is presented. The material is considered as a three-phase material consisting of interface zone, matrix and inclusions - each constituent modeled by an appropriate constitutive model. The Representative Volume Element (RVE) consists of inclusions idealized as circular shapes randomly placed into the specimen. The interface zone is modeled by means of cohesive contact finite elements developed here in order to capture the effects of phase debonding and interface crack closure/opening. As an initial approximation, the inclusion is modeled as linear elastic as well as the matrix. Our main goal here is to show a computational homogenization-based approach as an alternative to complex macroscopic constitutive models for the mechanical behavior of the quasi-brittle materials using a finite element procedure within a purely kinematical multi-scale framework. A set of numerical examples, involving the microcracking processes, is provided. It illustrates the performance of the proposed model. In summary, the proposed homogenization-based model is found to be a suitable tool for the identification of macroscopic mechanical behavior of quasi-brittle materials dealing with unilateral effect.

키워드

과제정보

연구 과제 주관 기관 : CAPES Foundation

참고문헌

  1. Brancherie, D. and Ibrahimbegovic, A. (2009), "Novel anisotrtopic continuum-discrete damage model capable of representing localized failure of massive structures. Part I: theoretical formulation and numerical implementation", Eng. Comput., 26(1-2), 100-127. https://doi.org/10.1108/02644400910924825
  2. Carol, I., Lopez, C.M. and Roa, O. (2001), "Micromechanical analysis of quasi-brittle materials using fracture-based interface elements", Int. J. Numer. Meth. Eng., 52(1-2), 193-215. https://doi.org/10.1002/nme.277
  3. Cirak, F., Ortiz, M. and Pandolfi, A. (2005), "A cohesive approach to thin-shell fracture and fragmentation", Comput. Method. Appl. M., 194(21-24), 2604-2618. https://doi.org/10.1016/j.cma.2004.07.048
  4. Gal, E. and Kryvoruk, R. (2011), "Fiber reinforced concrete properties - a multiscale approach", Comput. Concr., 8 (5), 525-539. https://doi.org/10.12989/cac.2011.8.5.525
  5. Giusti, S.M., Blanco, P.J., de Souza Neto, E.A. and Feijoo, R.A. (2009), "An assessment of the Gurson yield criterion by a computational multi-scale approach", Eng. Computation, 26(3), 281-301. https://doi.org/10.1108/02644400910943626
  6. He, H., Stroeven, P., Stroeven, M. and Sluys, L.J. (2011), "Influence of particle packing on fracture properties of concrete", Comput. Concr., 8 (6), 677-692. https://doi.org/10.12989/cac.2011.8.6.677
  7. Ju, S. H., Stone, J.J. and Rowlands, R.E. (1995), "A new symmetric contact lement stiffness matrix for frictional contact problems", Comput. Struct., 54 (2), 289-301. https://doi.org/10.1016/0045-7949(94)E0176-3
  8. Michel, J.C., Moulinec, H. and Suquet, P. (1999), "Effective properties of composite materials with periodic microstructure: a computational approach", Comput. Method. Appl. M., 172(1-4), 109-143 https://doi.org/10.1016/S0045-7825(98)00227-8
  9. Miehe, C., Schroder, J. and Schotte, J., (1999), "Computational homogenization analysis in finite plasticity simulation of texture development in polycrystalline materials", Comput. Method. Appl. M., 171(3-4), 387-418. https://doi.org/10.1016/S0045-7825(98)00218-7
  10. Nguyen, V.P., Lloberas Valls, O., Stroeven, M. and Sluys, L.J. (2010), "On the existence of representative volumes for softening quasi-brittle materials - a failure zone averaging scheme", Comput. Method. Appl. M., 199 (45-48), 3026-3036.
  11. Nguyen, V.P., Lloberas Valls, O., Stroeven, M. and Sluys, L.J. (2011), "Homogenization-based multiscale crack modelling: from micro-diffusive damage to macro-cracks", Comput. Method. Appl. M., 200 (9-12), 1220-1236. https://doi.org/10.1016/j.cma.2010.10.013
  12. Ortiz, M. and Pandolfi, A. (1999), "Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis", Int. J. Numer. Meth. Eng., 44(9), 1267-1282. https://doi.org/10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7
  13. Paulino, G.H., Celes, W., Espinha, R. and Zhang, Z. (2008), "A general topology-based framework for adaptative isertion of cohesive elements in finite element meshes", Eng. Computation, 24(1), 59-78. https://doi.org/10.1007/s00366-007-0069-7
  14. Peric, D., de Souza Neto, E.A., Feijoo, R.A., Partovi, M. and Carneiro Molina, A.J. (2011), "On micro-to-macro transitions for multiscale analysis of heterogeneous materials: unified variational basis and finite element Implementation", Int. J. Numer. Meth. Eng., 87(1-5), 149-170. https://doi.org/10.1002/nme.3014
  15. Pituba, J.J.C. and Fernandes, G.R. (2011), "An anisotropic damage model for concrete", J. Eng. Mech-ASCE., 137(9), 610-624. DOI: 10.1061/(ASCE)EM.1943-7889.0000260.
  16. Somer, D.D., de Souza Neto, E.A., Dettmer, W.G. and Peric, D. (2009),. "A sub-stepping scheme for multi-scale analysis of solids", Comput. Method. Appl. M., 198(9-12), 1006-1016. https://doi.org/10.1016/j.cma.2008.11.013
  17. Terada, K., Saiki, I., Matsui. K. and Yamakawa, Y. (2003), "Two-scale kinematics and linearization for simultaneous two-scale analysis of periodic heterogeneous solids at finite strains", Comput. Method. Appl. M., 192(31-32), 3531- 3563. https://doi.org/10.1016/S0045-7825(03)00365-7
  18. Unger, J.F. and Eckardt, S. (2011a), "Multiscale modeling of concrete", Arch. Comput. Method. E., 18(3), 341-393. https://doi.org/10.1007/s11831-011-9063-8
  19. Unger, J.F., Eckardt, S. and Konke, C. (2011b), "A mesoscale model for concrete to simulate mechanical failure", Comput. Concr., 8(4), 401-423. https://doi.org/10.12989/cac.2011.8.4.401
  20. Verhoosel, C.V., Remmers, J.J.C., Gutierrez, M.A. and de Borst, R. (2010), "Computational homogenisation for adhesive and cohesive failure in quasi-brittle solids", Int. J. Numer. Meth. Eng., 83 (8-9), 1155-1179. https://doi.org/10.1002/nme.2854
  21. Wriggers, P. and Reinelt, J. (2009), "Multi-scale approach for frictional contact of elastomers on rough rigid surfaces", Comput. Method. Appl. M., 198(21-26), 1996-2008. https://doi.org/10.1016/j.cma.2008.12.021
  22. Wriggers, P. (2006), Computational contact mechanics, Springer-Verlag, Berlin.
  23. Xiaoyu, J., Jianping, Q., Chenghua, W. and Yu, Z. (2006), "Computer simulation of landslides by the contact element method", Comput. Geosci-UK, 32(4), 434-441. https://doi.org/10.1016/j.cageo.2005.07.004
  24. Zhu, Q., Kondo, D., Shao, J. and Pensee, V. (2008), "Micromechanical modelling of anisotropic damage in brittle rocks and application", Int. J. Rock Mech. Min., 45(4), 467-477. https://doi.org/10.1016/j.ijrmms.2007.07.014
  25. Zhu, Q., Kondo, D. and Shao, J. (2009), "Homogenization-based analysis of anisotropic damage in brittle materials with unilateral effect and interactions between microcracks", Int. J. Numer. Anal. Met., 33(6), 749-772. https://doi.org/10.1002/nag.741

피인용 문헌

  1. Análise da influência dos processos de plasticidade e fratura no comportamento mecânico de microestruturas de Compósitos de Matriz Metálica vol.21, pp.3, 2016, https://doi.org/10.1590/S1517-707620160003.0056
  2. Formulação multi-escala para a análise de flexão de placas considerando processos dissipativos na microestrutura e acoplamento MEC/MEF vol.22, pp.2, 2017, https://doi.org/10.1590/s1517-707620170002.0153
  3. Análise da influência de microestruturas heterogêneas na resposta macromecânica do problema bidimensional de placas vol.22, pp.2, 2017, https://doi.org/10.1590/s1517-707620170002.0162
  4. Contribuições ao estudo de microestruturas reforçadas [Contributions to the Study of Reinforced Microstructures] vol.14, pp.2, 2015, https://doi.org/10.5216/reec.v14i2.46987
  5. Análise em multi-escala do problema bidimensional de placas submetidas ao cisalhamento e considerando descolamento de fases vol.25, pp.3, 2015, https://doi.org/10.1590/s1517-707620200003.1081
  6. A proposal to use the inverse problem for determining parameters in a constitutive model for concrete vol.25, pp.13, 2015, https://doi.org/10.1007/s00500-021-05745-x
  7. Computational homogenisation approach applied to improve mechanical properties of heterogeneous materials vol.40, pp.6, 2015, https://doi.org/10.1007/s40314-021-01580-w