DOI QR코드

DOI QR Code

Fuel Supply of Direct Carbon Fuel Cells via Thermal Decomposition of Hydrocarbons Inside a Porous Ni Anode

다공성 니켈 연료 전극 내부에서 탄화수소의 열분해를 통한 직접 탄소 연료 전지의 연료공급

  • Yi, Hakgyu (School of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Li, Chengguo (School of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Jalalabadi, Tahereh (School of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Lee, Donggeun (School of Mechanical Engineering, Pusan Nat'l Univ.)
  • Received : 2015.02.10
  • Accepted : 2015.03.31
  • Published : 2015.06.01

Abstract

This study offers a novel method for improving the physical contact between the anode and fuel in a direct carbon fuel cell (DCFC): a direct generation of carbon in a porous Ni anode through the thermal decomposition of gaseous hydrocarbons. Three kinds of alkane hydrocarbons with different carbon numbers (CH4, C2H6, and C3H8) are tested. From electron microscope observations of the carbon particles generated from each hydrocarbon, we confirm that more carbon spheres (CS), carbon nanotubes (CNT), and carbon nanofibers (CNF) were identified with increasing carbon number. Raman scattering results revealed that the carbon samples became less crystalline and more flexible with increasing carbon number. DCFC performance was measured at $700^{\circ}C$ with the anode fueled by the same mass of each carbon sample. One-dimensional carbon fuels of CNT and CNF more actively produced and had power densities 148 and 210 times higher than that of the CS, respectively. This difference is partly attributed to the findings that the less-crystalline CNT and CNF have much lower charge transfer resistances than the CS.

본 연구에서는 직접 탄소 연료전지(DCFC)에서 세 종류의 탄화수소(메탄, 에탄, 프로판) 열분해를 이용하여 다공성 니켈 연료극에 탄소를 직접 생성시켜 연료극과 연료간의 물리적 접촉을 향상시켰다. 전자현미경으로 각각의 탄화수소로부터 생성된 탄소 입자들이 탄소 수가 증가함에 따라 각각 탄소구형체(CS), 탄소나노튜브(CNT), 탄소나노섬유(CNF)임을 확인하였다. 그리고 탄소 샘플들의 결정성을 알아보기 위해 라만 산란 분석을 수행하였고, 탄화수소의 탄소 수가 증가할수록 생성된 탄소의 결정성이 떨어지고 더 유연하였다. 동일한 질량의 탄소로 채워진 연료극의 DCFC 성능을 $700^{\circ}C$ 에서 측정하였고, CNT 와 CNF 가 CS 보다 반응성이 좋아 각각 148%, 210% 높은 전력밀도를 보였다. 이는 결정성이 떨어지는 CNT 와 CNF 의 낮은 전하전달저항에 의한 것으로 사료된다.

Keywords

References

  1. Giddey, S., Badwal, S. P. S., Kulkarni, A. and Munnings, C., 2012, "A Comprehensive Review of Direct Carbon Fuel Cell Technology," Progress in Energy and Combustion Science, Vol. 38, pp. 360-399. https://doi.org/10.1016/j.pecs.2012.01.003
  2. Cao, D., Sun, Y. and Wang, G., 2007, "Direct Carbon Fuel Cell: Fundamentals and Recent Developments," Journal of Power Source, Vol. 167, pp. 250. https://doi.org/10.1016/j.jpowsour.2007.02.034
  3. Elleuch, A., Boussetta, A. and Halouani, K., 2012, "Analytical Modeling of Electrochemical Mechanisms in $CO_2$ and CO/$CO_2$ Producing Direct Carbon Fuel Cell," Journal of Electroanalytical Chemistry, Vol. 668, pp. 99-106. https://doi.org/10.1016/j.jelechem.2012.01.010
  4. Vutetakis, D. G., Skidmore, D. R. and Byker, H. J., 1987, "Electrochemical Oxidation of Molten Carbonate-coal Slurries," Journal of the Electrochemical Society, Vol. 34, pp. 3027-3035.
  5. Li, X., Zhu, Z., Macro, R. D., Bradley, J. and Dicks, A., 2009, "Carbon Nanofibers Synthesized by Catalytic Decomposition of Methane and their Electrochemical Performance in a Direct Carbon Fuel Cell," Energy & Fuels, Vol. 23, pp. 3721-3731. https://doi.org/10.1021/ef900203h
  6. Li, X., Zhu, Z., Macro, R. D., Bradley, J. and Dicks, A., 2008, "Evaluation of Raw Coals as Fuels for Direct Carbon Fuel Cells," Ind. Eng. Chem. Res., Vol. 47, pp. 9670-9677. https://doi.org/10.1021/ie800891m
  7. Li, X., Zhu, Z., Marco, R. D., Bradley, J. and Dicks, A., 2010, "Evaluation of Raw Coals as Fuels for Direct Carbon Fuel Cells," Journal of Power Sources, Vol. 195, pp. 4051-4058. https://doi.org/10.1016/j.jpowsour.2010.01.048
  8. Yu, J., Zhao, Y. and Li, Y., 2014, "Utilization of Corn Cob Biochar in a Direct Carbon Fuel Cell," Journal of Power Sources, Vol. 270, pp. 312-317. https://doi.org/10.1016/j.jpowsour.2014.07.125
  9. Lim, T. K., Kim, S. K., Yun, U. J., Lee, J. W., Lee, S. B., Park, S. J. and Song, R. H., 2014, "Performance Characteristic of a Tubular Carbon-based Fuel Cell Short Stack Coupled with a Dry Carbon Gasifier," International Journal of Hydrogen Energy, Vol. 39, 1-7. https://doi.org/10.1016/j.ijhydene.2013.10.060
  10. Jewulski, J., Skrzypkiewicz. M., Struzik, M. and Radziejewska, I. L., 2014, "Lignite as a Fuel for Direct Carbon Fuel Cell System," International Journal of Hydrogen Energy, Vol. 39, pp. 21778-21785. https://doi.org/10.1016/j.ijhydene.2014.05.039
  11. Yu, J., Yu, B. and Li, Y., 2013, "Electrochemical Oxidation of Catalytic Grown Carbon Fiber in a Direct Cabon Fuel Cell Using $Ge_{0.8}Sm_{0.2}O_{1.9}$-Carbonate Electrolyte," International Journal of Hydrogen Energy, Vol. 38, pp. 16615-16622. https://doi.org/10.1016/j.ijhydene.2013.02.113
  12. Xu, K., Chen, C., Liu, H., Tian, Y., Li, X. and Yao, H., 2014, "Effect of Coal based Pyrolysis Gases on the Performance of Solid Oxide Direct Carbon Fuel Cells," International Journal of Hydrogen Energy, Vol. 39, pp. 17845-17851. https://doi.org/10.1016/j.ijhydene.2014.08.133
  13. Nabae, Y., Pointon, K. D. and Irvine, J. T. S., 2009, "Ni/C Slurries based on Molten Carbonates as a Fuel for Hybrid Direct Carbon Fuel Cells," Journal of The Electrochemical Society, Vol. 156, pp. B716-B720. https://doi.org/10.1149/1.3110862
  14. Liu, J., Ye, K., Cheng, K., Wang, G., Yin, J. and Cao, D., 2014, "The Catalytic Effect of $CeO_2$ for Electrochemical Oxidation of Graphite in Molten Carbonate," Electrochim. Acta, Vol. 135, pp. 270-275. https://doi.org/10.1016/j.electacta.2014.05.010
  15. Li, C., Shi, Y. and Cai, N., 2011, "Effect of Contact Type Between Anode and Carbonaceous Fuels on Direct Carbon Fuel Cell Reaction Characteristics," Journal of Power Sources, Vol. 196, pp. 4588-4593. https://doi.org/10.1016/j.jpowsour.2011.01.039
  16. Hasegawa, S. and Ihara, M., 2008, "Reaction Mechanism of Solid Carbon Fuel in Rechargeable Direct Carbon SOFCs with Methane for Charging," Journal of Electrochemical Society, Vol. 155, pp. B58-B63. https://doi.org/10.1149/1.2801399
  17. Saito, H., Hasegawa, S. and Ihara, M., 2008, "Effective Anode Thickness in Rechargeable Direct Carbon Fuel Cells Using Fuel Charged by Methane," Journal of The Electrochemical Society, Vol. 155, pp. B443-B447. https://doi.org/10.1149/1.2840563
  18. Ihara, M. and Hasegawa, S., 2006, "Quickly Rechargeable Direct Carbon Solid Oxide Fuel Cell with Propane for Recharging," Journal of Electrochemical Society, Vol. 153, pp. A1544-A1546. https://doi.org/10.1149/1.2203948
  19. Li, X., Zhu, Z., Macro, R. D., Bradley, J. and Dicks, A., 2009, "Carbon Nanofibers Synthesized by Catalytic Decomposition of Methane and their Electrochemical Performance in a Direct Carbon Fuel Cell," Energy & Fuels, Vol. 23, pp. 3721-3731 https://doi.org/10.1021/ef900203h
  20. Xu, X., Zhou, W., Liang, F. and Zhu, Z., 2013, "A Comparative Study of Different Carbon Fuels in an Electrolyte-supported Hybrid Direct Carbon Fuel Cell," Applied Energy, Vol. 108, pp. 4022-4029.
  21. Li, C., Lee, E. K., Kim, Y. T. and Lee, D., 2014, "Enhancing Triple-phase Boundary at Fuel Electrode of Direct Carbon Fuel Cell using a Fuel-filled Ceria-coated Porous Anode," International Journal of Hydrogen Energy, Vol. 39, pp. 17314-17321. https://doi.org/10.1016/j.ijhydene.2014.08.028
  22. Xu, X., Zhou, W., Liang, F. and Zhu, Z., 2013, "Optimization of a Direct Carbon Fuel Cell for Operation below $700^{\circ}C$," International Journal of Hydrogen Energy, Vol. 38, pp. 5367-5374. https://doi.org/10.1016/j.ijhydene.2013.02.066
  23. Lanzini, A., Leone, P., Guerra, C., Smeacetto, F., Brandon, N. P. and Santarelli, M., 2013, "Durability of Anode Supported Solid Oxides Fuel Cells(SOFC) under Dryreforming of Methane," Chemical Engineering Journal, Vol. 220, pp. 254-263. https://doi.org/10.1016/j.cej.2013.01.003
  24. Bove, R. and Lunghi, P., 2005, "Experimental Comparison of MCFC Performance using Three Different Biogas Types and Methane," Journal of Power Sources, Vol. 145, pp. 588-593. https://doi.org/10.1016/j.jpowsour.2005.01.069
  25. Muradov, N. Z., 1998, "$CO_2$-free Production of Hydrogen by Catalytic Pyrolysis of Hydrocarbon Fuel," Energy & Fuels, Vol. 12, pp. 41-48. https://doi.org/10.1021/ef9701145
  26. Michael, P. and Walker, R. A., 2007, "An Investigation of Solid Oxide Fuel Cell Chemistry: a Spectroscopic Approach," Michael Brendan Scott Pomfret Doctor of Philosophy, pp. 174-175.
  27. Lu, S. Y. and Lin, C. H., 1999, "Effects of Wall Temperature and Seed Particle on Particle Growth and Deposition in a Hot-wall Chemical Vapor Deposition Reactor," Journal of the Electrochemical Society, Vol. 146, pp. 4105-4110. https://doi.org/10.1149/1.1392599
  28. Kim, S. H. and Zachariah, M. R., 2006, "In-flight Kinetic Measurements of the Aerosol Growth of Carbon Nanotubes by Electrical Mobility Classification," Journal of Physical Chemistry B, Vol. 110, pp. 4555-4562.
  29. Solovyev, E. A., Kuvshinov, D. G., Ermakov, D. Y. and Kuvshinov, G. G., 2009, "Production of Hydrogen and Nanofibrous Carbon by Selective Catalytic Decomposition of Propane," International Journal of Hydrogen Energy, Vol. 34, pp. 1310-1323.
  30. Louis, B., Gulino, G., Vieira, R., Amadou, J., Dintzer, T., Galvagno, S., Centi, G., Ledoux, M. J. and Pham-Huu, C., 2005, "High Yield Synthesis of Multi-walled Carbon Nanotubes by Catalytic Decomposition of Ethane Over Iron Supported on Alumina Catalyst," Catalysis Today, Vol. 102-103, pp. 23-28. https://doi.org/10.1016/j.cattod.2005.02.031
  31. Ke, X., Bals, S., Negreira, A. R., Hantschel, T., Bender, H. and Tendeloo, G. V., 2009, "TEM Sample Preparation by FIB for Carbon Nanotube Interconnects," Ultramicroscopy, Vol. 109, pp. 1353-1359. https://doi.org/10.1016/j.ultramic.2009.06.011
  32. Firmansyah, D. A., Sullivan, K. Lee, K. S., Kim, Y. H., Zahaf, R., Zachariah, M. R. and Lee, D., 2012, "Microstructural Behavior of the Alumina Shell and Aluminum Core Before and After Melting of Aluminum Nanoparticles," Journal of Physical Chemistry C, Vol. 116, pp. 404-411. https://doi.org/10.1021/jp2095483
  33. Choi, I. D., Lee, H., Shim, Y. B. and Lee, D., 2010, "A One-step Continuous Synthesis of Carbon Supported Pt Catalysts Using a Flame for the Preparation of the Fuel Electrode," Langmuir, Vol. 26, No. 13, pp. 11212-11216. https://doi.org/10.1021/la1005264
  34. Dudek, M, Tomczyk, P., Socha, R., Skrzypkiewicz, M. and Jewulski, J., 2013, "Biomass Fuels for Direct Carbon Fuel Cell with Solid Oxide Electrolyte," Int. J. Electrochem. Sci, Vol. 8, pp. 3229-3253.
  35. Tubilla, B. C., Xu, C., Zondlo, J. W., Sabolsky, K. and Sabolsky, E. M., 2013, "Investigation of Anode Configurations and Fuel Mixtures on the Performance of Direct Carbon Fuel Cells (DCFCs)," Journal of Power Sources, Vol. 238, pp. 227-235. https://doi.org/10.1016/j.jpowsour.2013.03.072