DOI QR코드

DOI QR Code

The effect of different functionalities of FGM and FGPM layers on free vibration analysis of the FG circular plates integrated with piezoelectric layers

  • Arefi, M. (Department of Solid Mechanic, Faculty of Mechanical Engineering, University of Kashan)
  • 투고 : 2013.10.03
  • 심사 : 2014.06.07
  • 발행 : 2015.05.25

초록

The present paper deals with the free vibration analysis of the functionally graded solid and annular circular plates with two functionally graded piezoelectric layers at top and bottom subjected to an electric field. Classical plate theory (CPT) is used for description of the all deformation components based on a symmetric distribution. All the mechanical and electrical properties except Poisson's ratio can vary continuously along the thickness direction of the plate. The properties of plate core can vary from metal at bottom to ceramic at top. The effect of non homogeneous index of functionally graded and functionally graded piezoelectric sections can be considered on the results of the system. $1^{st}$ and $2^{nd}$ modes of natural frequencies of the system have been evaluated for both solid and annular circular plates, individually.

키워드

참고문헌

  1. Alinia, M.M. and Ghannadpour, S.A.M. (2009), "Nonlinear analysis of pressure loaded FGM plates", Compos. Struct., 88(3), 354-359. https://doi.org/10.1016/j.compstruct.2008.04.013
  2. Allahverdizadeh, A., Naei, M.H. and Bahrami, M.N. (2008a), "Vibration amplitude and thermal effects on the nonlinear behavior of thin circular functionally graded plates", Int. J. Mech. Sci. 50(3), 445-454. https://doi.org/10.1016/j.ijmecsci.2007.09.018
  3. Allahverdizadeh, A., Naei, M.H. and Bahrami, M.N, (2008b), "Nonlinear free and forced vibration analysis of thin circular functionally graded plates", J. Sound. Vib. 310(4-5), 966-984. https://doi.org/10.1016/j.jsv.2007.08.011
  4. Arefi, M. and Rahimi, G.H. (2011), "Non linear analysis of a functionally graded square plate with two smart layers as sensor and actuator under normal pressure", Smart. Struct. Syst., 8(5) 433-448. https://doi.org/10.12989/sss.2011.8.5.433
  5. Arefi, M., Rahimi, G.H. and Khoshgoftar, M.J. (2011), "Optimized design of a cylinder under mechanical, magnetic and thermal loads as a sensor or actuator using a functionally graded piezomagnetic material", Int. J. Phys. Sci., 6(27), 6315-6322.
  6. Arefi, M. and Rahimi, G.H. (2012a), "Three-dimensional multi-field equations of a functionally graded piezoelectric thick shell with variable thickness, curvature and arbitrary nonhomogeneity", Acta. Mech. 223(1), 63-79. https://doi.org/10.1007/s00707-011-0536-5
  7. Arefi, M. and Rahimi, G.H. (2012b), "Studying the nonlinear behavior of the functionally graded annular plates with piezoelectric layers as a sensor and actuator under normal pressure", Smart. Struct. Syst., 9(2), 127-143. https://doi.org/10.12989/sss.2012.9.2.127
  8. Arefi, M. and Rahimi, G.H. (2012c), "The effect of nonhomogeneity and end supports on the thermo elastic behavior of a clamped-clamped FG cylinder under mechanical and thermal loads". Int. J. Pres. Ves. Piping., 96-97, 30-37. https://doi.org/10.1016/j.ijpvp.2012.05.009
  9. Arefi, M. and Rahimi, G.H. (2012d), "Comprehensive thermoelastic analysis of a functionally graded cylinder with different boundary conditions under internal pressure using first order shear deformation theory", Mechanika, 18(1), 5-13.
  10. Arefi, M., Rahimi, G.H. and Khoshgoftar, M.J. (2012), "Electro elastic analysis of a pressurized thick-walled functionally graded piezoelectric cylinder using the first order shear deformation theory and energy method", Mechanika., 18(3), 292-300.
  11. Banerjee, A., Bhattacharya, B. and Mallik, A.K. (2008), "Large deflection of cantilever beams with geometric nonlinearity: Analytical and numerical approaches", Int. J. Nonlinear. Mech., 43(5), 366-376. https://doi.org/10.1016/j.ijnonlinmec.2007.12.020
  12. Boresi, A. (1993), Advanced Mechanics of Materials, John Wiley & Sons.
  13. Chen, W.Q., Bian, Z.G. and Ding, H.J. (2004), "Three-dimensional vibration analysis of fluid-filled orthotropic FGM cylindrical shells", Int. J. Mech. Sci., 46(1), 159-171. https://doi.org/10.1016/j.ijmecsci.2003.12.005
  14. Ebrahimi, F. and Rastgo, A. (2008), "An analytical study on the free vibration of smart circular thin FGM plate based on classical plate theory", Thin. Wall. Struct., 46(12), 1402-1408. https://doi.org/10.1016/j.tws.2008.03.008
  15. Efraim, E. and Eisenberger, M. (2007), "Exact vibration analysis of variable thickness thick annular isotropic and FGM plates", J. Sound. Vib., 299(4-5), 720-738. https://doi.org/10.1016/j.jsv.2006.06.068
  16. Gautschi, G. (2002), Piezoelectric Sensorics: Force, Strain, Pressure, Acceleration and Acoustic Emission Sensors, Materials and Amplifiers, Springer.
  17. GhannadPour, S.A.M. and Alinia, M.M. (2006), "Large deflection behavior of functionally graded plates under pressure loads", Compos. Struct., 75(1-4), 67-71. https://doi.org/10.1016/j.compstruct.2006.04.004
  18. Huang, X.L. and Shen, H.S. (2006), "Vibration and dynamic response of functionally graded plates with piezoelectric actuators in thermal environments", J. Sound. Vib., 289(1-2), 25-53. https://doi.org/10.1016/j.jsv.2005.01.033
  19. Hosseinzadeh, A. and Ahmadian, M.T. (2010), "Application of piezoelectric and functionally graded materials in designing electrostatically actuated micro switches", J. Solid. Mech., 2(2), 179-189.
  20. Kadoli, R. and Ganesan, N. (2006), "Buckling and free vibration analysis of functionally graded cylindrical shells subjected to a temperature-specified boundary condition", J. Sound. Vib., 289(3), 450-480. https://doi.org/10.1016/j.jsv.2005.02.034
  21. Bhangale, R.K., Ganesan, N. and Padmanabhan, C. (2006), "Linear thermoelastic buckling and free vibration behavior of functionally graded truncated conical shells", J. Sound. Vib., 292(1-2), 341-371. https://doi.org/10.1016/j.jsv.2005.07.039
  22. Khabbaz, R.S., Manshadi, B.D. and Abedian, A. (2009), "Non-linear analysis of FGM plates under pressure loads using the higher-order shear deformation theories", Compos. Struct., 89(3), 333-344. https://doi.org/10.1016/j.compstruct.2008.06.009
  23. Khoshgoftar, M.J., Arani, A.G. and Arefi, M. (2009), "Thermoelastic analysis of a thick walled cylinder made of functionally graded piezoelectric material", Smart. Mater. Struct., 18(11), 115007 (8pp). https://doi.org/10.1088/0964-1726/18/11/115007
  24. Lai, M., Rubin, D. and Krempl, E. (1999), Introduction to Continuum Mechanics, Buttenvorth-Heinemann.
  25. Li, Q., Iu, V.P. and Kou, K.P. (2008), "Three-dimensional vibration analysis of functionally graded material sandwich plates", J. Sound. Vib., 311, 498-515. https://doi.org/10.1016/j.jsv.2007.09.018
  26. Liew, K.M., Yang, J. and Wu, Y.F. (2006), "Nonlinear vibration of a coating-FGM-substrate cylindrical panel subjected to a temperature gradient", Comput. Method. Appl. M., 195(9-12), 1007-1026. https://doi.org/10.1016/j.cma.2005.04.001
  27. Malekzadeh, P. and Vosoughi, A.R. (2009), "DQM large amplitude vibration of composite beams on nonlinear elastic foundations with restrained edges", Com. Nonlinear. Sci. Num. Sim., 14(3), 906-915. https://doi.org/10.1016/j.cnsns.2007.10.014
  28. Olfatnia, M., Xu, T., Miao, J.M., Ong, L.S., Jing, X.M. and Norford, L. (2010), "Piezoelectric circular microdiaphragm based pressure sensors", Sensor. Actuat. A- Phys., 163(1), 32-36. https://doi.org/10.1016/j.sna.2010.06.016
  29. Qian, Z.H., Jin, F., Lu, T. and Kishimoto, K. (2008), "Transverse surface waves in functionally graded piezoelectric materials with exponential variation", Smart. Mater. Struct., 17(6), 065005 (7pp). https://doi.org/10.1088/0964-1726/17/6/065005
  30. Prakash, T. and Ganapathi, M. (2006), "Asymmetric flexural vibration and thermoelastic stability of FGM circular plates using finite element method", Compos. Part B: Eng., 37(7-8), 642-649. https://doi.org/10.1016/j.compositesb.2006.03.005
  31. Rahimi, G.H., Arefi, M. and Khoshgoftar, M.J. (2011), "Application and analysis of functionally graded piezoelectrical rotating cylinder as mechanical sensor subjected to pressure and thermal loads", Appl. Math. Mech. (Engl. Ed.) 32(8), 997-1008. https://doi.org/10.1007/s10483-011-1475-6
  32. Shen, H.S. (2007), "Nonlinear thermal bending response of FGM plates due to heat conduction", Compos.. Part B: Eng., 38(2), 201-215. https://doi.org/10.1016/j.compositesb.2006.06.004
  33. Soufyane, A. (2009), "Exponential stability of the linearized non uniform Timoshenko beam", Nonlinear. Anal-Real, 10(2), 1016-1020. https://doi.org/10.1016/j.nonrwa.2007.11.019
  34. Tichy, J., Erhart, J., Kittinger, E. and Privratska, J. (2010), Fundamentals of Piezoelectric Sensorics: Mechanical, Dielectric, and Thermodynamical Properties of Piezoelectric Materials, Springer.
  35. Ugural, A.C. (1981), Stress in plate and shells, McGraw-Hill.
  36. Woo, J. and Meguid, S.A. (2001), "Nonlinear analysis of functionally graded plates and shallow shells", Int. J. Solids. Struct., 38(42-43), 7409-7421. https://doi.org/10.1016/S0020-7683(01)00048-8
  37. Yamanouchi, M., Koizumi, M. and Shiota, I. (1990), Proceedings of the First International Symposium on Functionally Gradient Materials, Sendai, Japan.
  38. Zylkaa, P. and Janus, P. (2010), "Applicability of MEMS cantilever micro-dilatometer for direct transverse strain monitoring in electroactive polymers", Sensor. Actuat. A- Phys., 163(1), 111-117. https://doi.org/10.1016/j.sna.2010.08.001

피인용 문헌

  1. A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates vol.184, 2018, https://doi.org/10.1016/j.compstruct.2017.10.047
  2. Transient thermo-piezo-elastic responses of a functionally graded piezoelectric plate under thermal shock vol.25, pp.2, 2017, https://doi.org/10.12989/scs.2017.25.2.187
  3. A new simple three-unknown shear deformation theory for bending analysis of FG plates resting on elastic foundations vol.25, pp.6, 2015, https://doi.org/10.12989/scs.2017.25.6.717
  4. A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis vol.25, pp.1, 2020, https://doi.org/10.12989/cac.2020.25.1.037
  5. Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a four-unknown refined integral plate theory vol.25, pp.3, 2020, https://doi.org/10.12989/cac.2020.25.3.225
  6. Large amplitude free vibrations of FGM shallow curved tubes in thermal environment vol.25, pp.6, 2015, https://doi.org/10.12989/sss.2020.25.6.693
  7. Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position vol.39, pp.1, 2021, https://doi.org/10.12989/scs.2021.39.1.051