참고문헌
- Alinia, M.M. and Ghannadpour, S.A.M. (2009), "Nonlinear analysis of pressure loaded FGM plates", Compos. Struct., 88(3), 354-359. https://doi.org/10.1016/j.compstruct.2008.04.013
- Allahverdizadeh, A., Naei, M.H. and Bahrami, M.N. (2008a), "Vibration amplitude and thermal effects on the nonlinear behavior of thin circular functionally graded plates", Int. J. Mech. Sci. 50(3), 445-454. https://doi.org/10.1016/j.ijmecsci.2007.09.018
- Allahverdizadeh, A., Naei, M.H. and Bahrami, M.N, (2008b), "Nonlinear free and forced vibration analysis of thin circular functionally graded plates", J. Sound. Vib. 310(4-5), 966-984. https://doi.org/10.1016/j.jsv.2007.08.011
- Arefi, M. and Rahimi, G.H. (2011), "Non linear analysis of a functionally graded square plate with two smart layers as sensor and actuator under normal pressure", Smart. Struct. Syst., 8(5) 433-448. https://doi.org/10.12989/sss.2011.8.5.433
- Arefi, M., Rahimi, G.H. and Khoshgoftar, M.J. (2011), "Optimized design of a cylinder under mechanical, magnetic and thermal loads as a sensor or actuator using a functionally graded piezomagnetic material", Int. J. Phys. Sci., 6(27), 6315-6322.
- Arefi, M. and Rahimi, G.H. (2012a), "Three-dimensional multi-field equations of a functionally graded piezoelectric thick shell with variable thickness, curvature and arbitrary nonhomogeneity", Acta. Mech. 223(1), 63-79. https://doi.org/10.1007/s00707-011-0536-5
- Arefi, M. and Rahimi, G.H. (2012b), "Studying the nonlinear behavior of the functionally graded annular plates with piezoelectric layers as a sensor and actuator under normal pressure", Smart. Struct. Syst., 9(2), 127-143. https://doi.org/10.12989/sss.2012.9.2.127
- Arefi, M. and Rahimi, G.H. (2012c), "The effect of nonhomogeneity and end supports on the thermo elastic behavior of a clamped-clamped FG cylinder under mechanical and thermal loads". Int. J. Pres. Ves. Piping., 96-97, 30-37. https://doi.org/10.1016/j.ijpvp.2012.05.009
- Arefi, M. and Rahimi, G.H. (2012d), "Comprehensive thermoelastic analysis of a functionally graded cylinder with different boundary conditions under internal pressure using first order shear deformation theory", Mechanika, 18(1), 5-13.
- Arefi, M., Rahimi, G.H. and Khoshgoftar, M.J. (2012), "Electro elastic analysis of a pressurized thick-walled functionally graded piezoelectric cylinder using the first order shear deformation theory and energy method", Mechanika., 18(3), 292-300.
- Banerjee, A., Bhattacharya, B. and Mallik, A.K. (2008), "Large deflection of cantilever beams with geometric nonlinearity: Analytical and numerical approaches", Int. J. Nonlinear. Mech., 43(5), 366-376. https://doi.org/10.1016/j.ijnonlinmec.2007.12.020
- Boresi, A. (1993), Advanced Mechanics of Materials, John Wiley & Sons.
- Chen, W.Q., Bian, Z.G. and Ding, H.J. (2004), "Three-dimensional vibration analysis of fluid-filled orthotropic FGM cylindrical shells", Int. J. Mech. Sci., 46(1), 159-171. https://doi.org/10.1016/j.ijmecsci.2003.12.005
- Ebrahimi, F. and Rastgo, A. (2008), "An analytical study on the free vibration of smart circular thin FGM plate based on classical plate theory", Thin. Wall. Struct., 46(12), 1402-1408. https://doi.org/10.1016/j.tws.2008.03.008
- Efraim, E. and Eisenberger, M. (2007), "Exact vibration analysis of variable thickness thick annular isotropic and FGM plates", J. Sound. Vib., 299(4-5), 720-738. https://doi.org/10.1016/j.jsv.2006.06.068
- Gautschi, G. (2002), Piezoelectric Sensorics: Force, Strain, Pressure, Acceleration and Acoustic Emission Sensors, Materials and Amplifiers, Springer.
- GhannadPour, S.A.M. and Alinia, M.M. (2006), "Large deflection behavior of functionally graded plates under pressure loads", Compos. Struct., 75(1-4), 67-71. https://doi.org/10.1016/j.compstruct.2006.04.004
- Huang, X.L. and Shen, H.S. (2006), "Vibration and dynamic response of functionally graded plates with piezoelectric actuators in thermal environments", J. Sound. Vib., 289(1-2), 25-53. https://doi.org/10.1016/j.jsv.2005.01.033
- Hosseinzadeh, A. and Ahmadian, M.T. (2010), "Application of piezoelectric and functionally graded materials in designing electrostatically actuated micro switches", J. Solid. Mech., 2(2), 179-189.
- Kadoli, R. and Ganesan, N. (2006), "Buckling and free vibration analysis of functionally graded cylindrical shells subjected to a temperature-specified boundary condition", J. Sound. Vib., 289(3), 450-480. https://doi.org/10.1016/j.jsv.2005.02.034
- Bhangale, R.K., Ganesan, N. and Padmanabhan, C. (2006), "Linear thermoelastic buckling and free vibration behavior of functionally graded truncated conical shells", J. Sound. Vib., 292(1-2), 341-371. https://doi.org/10.1016/j.jsv.2005.07.039
- Khabbaz, R.S., Manshadi, B.D. and Abedian, A. (2009), "Non-linear analysis of FGM plates under pressure loads using the higher-order shear deformation theories", Compos. Struct., 89(3), 333-344. https://doi.org/10.1016/j.compstruct.2008.06.009
- Khoshgoftar, M.J., Arani, A.G. and Arefi, M. (2009), "Thermoelastic analysis of a thick walled cylinder made of functionally graded piezoelectric material", Smart. Mater. Struct., 18(11), 115007 (8pp). https://doi.org/10.1088/0964-1726/18/11/115007
- Lai, M., Rubin, D. and Krempl, E. (1999), Introduction to Continuum Mechanics, Buttenvorth-Heinemann.
- Li, Q., Iu, V.P. and Kou, K.P. (2008), "Three-dimensional vibration analysis of functionally graded material sandwich plates", J. Sound. Vib., 311, 498-515. https://doi.org/10.1016/j.jsv.2007.09.018
- Liew, K.M., Yang, J. and Wu, Y.F. (2006), "Nonlinear vibration of a coating-FGM-substrate cylindrical panel subjected to a temperature gradient", Comput. Method. Appl. M., 195(9-12), 1007-1026. https://doi.org/10.1016/j.cma.2005.04.001
- Malekzadeh, P. and Vosoughi, A.R. (2009), "DQM large amplitude vibration of composite beams on nonlinear elastic foundations with restrained edges", Com. Nonlinear. Sci. Num. Sim., 14(3), 906-915. https://doi.org/10.1016/j.cnsns.2007.10.014
- Olfatnia, M., Xu, T., Miao, J.M., Ong, L.S., Jing, X.M. and Norford, L. (2010), "Piezoelectric circular microdiaphragm based pressure sensors", Sensor. Actuat. A- Phys., 163(1), 32-36. https://doi.org/10.1016/j.sna.2010.06.016
- Qian, Z.H., Jin, F., Lu, T. and Kishimoto, K. (2008), "Transverse surface waves in functionally graded piezoelectric materials with exponential variation", Smart. Mater. Struct., 17(6), 065005 (7pp). https://doi.org/10.1088/0964-1726/17/6/065005
- Prakash, T. and Ganapathi, M. (2006), "Asymmetric flexural vibration and thermoelastic stability of FGM circular plates using finite element method", Compos. Part B: Eng., 37(7-8), 642-649. https://doi.org/10.1016/j.compositesb.2006.03.005
- Rahimi, G.H., Arefi, M. and Khoshgoftar, M.J. (2011), "Application and analysis of functionally graded piezoelectrical rotating cylinder as mechanical sensor subjected to pressure and thermal loads", Appl. Math. Mech. (Engl. Ed.) 32(8), 997-1008. https://doi.org/10.1007/s10483-011-1475-6
- Shen, H.S. (2007), "Nonlinear thermal bending response of FGM plates due to heat conduction", Compos.. Part B: Eng., 38(2), 201-215. https://doi.org/10.1016/j.compositesb.2006.06.004
- Soufyane, A. (2009), "Exponential stability of the linearized non uniform Timoshenko beam", Nonlinear. Anal-Real, 10(2), 1016-1020. https://doi.org/10.1016/j.nonrwa.2007.11.019
- Tichy, J., Erhart, J., Kittinger, E. and Privratska, J. (2010), Fundamentals of Piezoelectric Sensorics: Mechanical, Dielectric, and Thermodynamical Properties of Piezoelectric Materials, Springer.
- Ugural, A.C. (1981), Stress in plate and shells, McGraw-Hill.
- Woo, J. and Meguid, S.A. (2001), "Nonlinear analysis of functionally graded plates and shallow shells", Int. J. Solids. Struct., 38(42-43), 7409-7421. https://doi.org/10.1016/S0020-7683(01)00048-8
- Yamanouchi, M., Koizumi, M. and Shiota, I. (1990), Proceedings of the First International Symposium on Functionally Gradient Materials, Sendai, Japan.
- Zylkaa, P. and Janus, P. (2010), "Applicability of MEMS cantilever micro-dilatometer for direct transverse strain monitoring in electroactive polymers", Sensor. Actuat. A- Phys., 163(1), 111-117. https://doi.org/10.1016/j.sna.2010.08.001
피인용 문헌
- A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates vol.184, 2018, https://doi.org/10.1016/j.compstruct.2017.10.047
- Transient thermo-piezo-elastic responses of a functionally graded piezoelectric plate under thermal shock vol.25, pp.2, 2017, https://doi.org/10.12989/scs.2017.25.2.187
- A new simple three-unknown shear deformation theory for bending analysis of FG plates resting on elastic foundations vol.25, pp.6, 2015, https://doi.org/10.12989/scs.2017.25.6.717
- A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis vol.25, pp.1, 2020, https://doi.org/10.12989/cac.2020.25.1.037
- Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a four-unknown refined integral plate theory vol.25, pp.3, 2020, https://doi.org/10.12989/cac.2020.25.3.225
- Large amplitude free vibrations of FGM shallow curved tubes in thermal environment vol.25, pp.6, 2015, https://doi.org/10.12989/sss.2020.25.6.693
- Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position vol.39, pp.1, 2021, https://doi.org/10.12989/scs.2021.39.1.051