References
- Bayat, M. and Pakar, I. (2011a), "Nonlinear free vibration analysis of tapered beams by hamiltonian approach", J. Vibroengineering, 13(4), 654-661.
- Bayat, M. and Pakar, I. (2011b), "Application of he's energy balance method for nonlinear vibration of thin circular sector cylinder", Int. J. Phy. Sci., 6(23), 5564-5570.
- Bayat, M., Pakar, I. and Shahidi, M. (2011c), "Analysis of nonlinear vibration of coupled systems with cubic nonlinearity", Mechanika, 17(6), 620-629.
- Bayat, M. and Pakar, I. (2012a), "Accurate analytical solution for nonlinear free vibration of beams", Struct. Eng.Mech., 43(3), 337-347. https://doi.org/10.12989/sem.2012.43.3.337
- Bayat, M., Pakar, I. and Domaiirry, G, (2012b), "Recent developments of some asymptotic methods and their applications for nonlinear vibration equations in engineering problems: a review", Latin American J. Solids Struct., 9(2), 145- 234 .
- Bayat, M., Pakar, I. and Bayat, M. (2013a), "Analytical solution for nonlinear vibration of an eccentrically reinforced cylindrical shell", Steel Compos. Struct., 14(5), 511-521. https://doi.org/10.12989/scs.2013.14.5.511
- Bayat, M. and Pakar, I. (2013b), "Nonlinear dynamics of two degree of freedom systems with linear and nonlinear stiffnesses", Earthq. Eng. Eng. Vib., 12(3), 411-420 . https://doi.org/10.1007/s11803-013-0182-0
- Bayat, M. and Pakar, I. (2013c), "On the approximate analytical solution to non-linear oscillation systems", Shock Vib., 20(1), 43-52. https://doi.org/10.1155/2013/549213
- Bayat, M., Pakar, I. and Cveticanin, L. (2014a), "Nonlinear free vibration of systems with inertia and static type cubic nonlinearities: an analytical approach", Mech. Machine Theory, 77, 50-58. https://doi.org/10.1016/j.mechmachtheory.2014.02.009
- Bayat, M., Pakar, I. and Cveticanin, L. (2014b), "Nonlinear vibration of stringer shell by means of extended Hamiltonian approach", Arch. Appl. Mech., 84(1), 43-50. https://doi.org/10.1007/s00419-013-0781-2
- Bayat, M., Bayat, M. and Pakar, I. (2014c), "Nonlinear vibration of an electrostatically actuated microbeam", Latin American J. Solids Struct., 11(3), 534- 544. https://doi.org/10.1590/S1679-78252014000300009
- Cordero, A., Hueso, J.L., Martinezand, E. and Torregros, J.R. (2010), "Iterative methods for use with nonlinear discrete algebraic models", Math. Comput. Model., 52(7-8), 1251-1257. https://doi.org/10.1016/j.mcm.2010.02.028
- Dehghan, M. and Tatari, M. (2008), "Identifying an unknown function in a parabolic equation with over specified data via He's variational iteration method", Chaos, Solitons Fractals, 36(1), 157-166. https://doi.org/10.1016/j.chaos.2006.06.023
- He, J.H (2007), "Variational approach for nonlinear oscillators", Chaos, Solitons Fractals, 34(5), 1430-1439. https://doi.org/10.1016/j.chaos.2006.10.026
- He J.H. (2008), "An improved amplitude-frequency formulation for nonlinear oscillators", Int. J. Nonlinear Sci. Numer. Simul., 9(2), 211-212. https://doi.org/10.1515/IJNSNS.2008.9.2.211
- He, J.H. (2002), "Preliminary report on the energy balance for nonlinear oscillators", Mech. Res. Commun., 29(2), 107-111. https://doi.org/10.1016/S0093-6413(02)00237-9
- Kuo, B.L. and Lo, C.Y. (2009), "Application of the differential transformation method to the solution of a damped system with high nonlinearity", Nonlinear Anal., 70(4), 1732-1737. https://doi.org/10.1016/j.na.2008.02.056
- Mehdipour, I., Ganji, D.D. and Mozaffari, M. (2010), "Application of the energy balance method to nonlinear vibrating equations", Current Appl. Phys., 10(1), 104-112. https://doi.org/10.1016/j.cap.2009.05.016
- Nayfeh, A.H. and Mook, D.T. (1973), Nonlinear Oscillations, Wiley, New York.
- Odibat, Z., Momani, S, and Suat Erturk, V. (2008), "Generalized differential transform method: application to differential equations of fractional order", Appl. Math. Comput., 197(2), 467-477. https://doi.org/10.1016/j.amc.2007.07.068
- Pakar, I. and Bayat, M. (2011a), "Analytical solution for strongly nonlinear oscillation systems using energy balance method", Int. J. Phy. Sci., 6(22), 5166- 5170.
- Pakar, I. and Bayat, M. (2012a), "On the approximate analytical solution for parametrically excited nonlinear oscillators", J. Vibroengineering, 14(1), 423-429.
- Pakar, I. and Bayat, M. (2012b), "Analytical study on the non-linear vibration of Euler-Bernoulli beams", J. Vibroengineering, 14(1), 216-224.
- Pakar, I. and Bayat, M. (2013a), "An analytical study of nonlinear vibrations of buckled Euler_Bernoulli beams", Acta Phys. Polonica A, 123(1), 48-52. https://doi.org/10.12693/APhysPolA.123.48
- Pakar, I. and Bayat, M. (2013b), "Vibration analysis of high nonlinear oscillators using accurate approximate methods", Struct. Eng. Mech., 46(1), 137-151. https://doi.org/10.12989/sem.2013.46.1.137
- Shaban, M., Ganji, D.D. and Alipour, A.A. (2010), "Nonlinear fluctuation, frequency and stability analyses in free vibration of circular sector oscillation systems", Current Appl. Phys., 10(5), 1267-1285. https://doi.org/10.1016/j.cap.2010.03.005
- Shen, Y.Y. and Mo, L.F. (2009), "The max-min approach to a relativistic equation", Comput. Math. Appl., 58(11), 2131-2133. https://doi.org/10.1016/j.camwa.2009.03.056
- Wu, G. (2011), "Adomian decomposition method for non-smooth initial value problems", Math. Comput. Model., 54(9-10), 2104-2108. https://doi.org/10.1016/j.mcm.2011.05.018
- Xu, N. and Zhang, A. (2009), "Variational approachnext term to analyzing catalytic reactions in short monoliths", Comput. Math. Appl., 58(11-12), 2460-2463. https://doi.org/10.1016/j.camwa.2009.03.035
- Xu, L. (2008), "Variational approach to solution of nonlinear dispersive K(m, n) equation", Chaos, Solitons Fractals, 37(1), 137-143. https://doi.org/10.1016/j.chaos.2006.08.016
- Zeng, D.Q. and Lee, Y.Y. (2009), "Analysis of strongly nonlinear oscillator using the max-min approach", Int. J. Nonlinear Sci. Numer. Simul., 10 (10), 1361-1368.
Cited by
- Nonlinear vibration of conservative oscillator's using analytical approaches vol.59, pp.4, 2016, https://doi.org/10.12989/sem.2016.59.4.671
- Accurate semi-analytical solution for nonlinear vibration of conservative mechanical problems vol.61, pp.5, 2015, https://doi.org/10.12989/sem.2017.61.5.657
- Energy based approach for solving conservative nonlinear systems vol.13, pp.2, 2017, https://doi.org/10.12989/eas.2017.13.2.131
- Nonlinear vibration of multi-body systems with linear and nonlinear springs vol.25, pp.4, 2015, https://doi.org/10.12989/scs.2017.25.4.497
- Higher-order approximate periodic solution for the oscillator with strong nonlinearity of polynomial type vol.134, pp.6, 2015, https://doi.org/10.1140/epjp/i2019-12621-3
- Structural health monitoring through nonlinear frequency-based approaches for conservative vibratory systems vol.73, pp.3, 2020, https://doi.org/10.12989/sem.2020.73.3.331
- Numerical and experimental research on actuator forces in toggled active vibration control system (Part I: Numerical) vol.25, pp.2, 2020, https://doi.org/10.12989/sss.2020.25.2.229
- Multi-Beams modelling for high-rise buildings subjected to static horizontal loads vol.75, pp.3, 2020, https://doi.org/10.12989/sem.2020.75.3.283