참고문헌
- Arghavani, J., Auricchio, F., Naghdabadi, R., Reali, A. and Sohrabpour, S. (2010), "A 3-D phenomenological constitutive model for shape memory alloys under multiaxial loadings", Int. J. Plasticity, 26(7), 976-991. https://doi.org/10.1016/j.ijplas.2009.12.003
- Atanackovic, T. and Achenbach, M. (1989), "Moment-curvature relations for a pseudoelastic beam", Continuum Mech. Thermodyn., 1(1), 73-80. https://doi.org/10.1007/BF01125887
- Aurrichio, F. and Sacco, E. (1997), "A one-dimensional model for superelastic shape-memory alloys with different elastic properties between austenite and martensite", Int. J. Nonlinear Mech., 32(6), 1101-1114. https://doi.org/10.1016/S0020-7462(96)00130-8
- Auricchio, F., Taylor, R.L. and Lubliner, J. (1997), "Shape-memory alloys: macromodelling and numerical simulations of the superelastic behaviour", Comput. Method. Appl. M., 146(3-4), 281-312. https://doi.org/10.1016/S0045-7825(96)01232-7
- Berg, B.T. (1995), "Bending of superelastic wires, part I: experimental aspecls", J. Appl. Mech. -T ASME, 62(2), 459-465. https://doi.org/10.1115/1.2895952
- Boyd, J.G. and Lagoudas, D.C. (1996), "A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy", Int. J. Plasticity, 12(6), 805-842. https://doi.org/10.1016/S0749-6419(96)00030-7
- Brocca, M., Brinson, L.C. and Bazant, Z.P. (2002), "Three-dimensional constitutive model for shape memory alloys based on microplane model", J.Mech. Phys. Solids, 50(5), 1051-1077. https://doi.org/10.1016/S0022-5096(01)00112-0
- Chaudhry, Z. and Rogers C.A. (1991), "Bending and shape control of beams using SMA actuators", J Intel. Mat. Syst. Sir., 2(4), 581-602. https://doi.org/10.1177/1045389X9100200410
- Degeratu, S., Bizdoaca, N.G., Manolea, G., Diaconu, I., Petrisor, A. and Degeratu V. (2008), On the design of a shape memory alloy spring actuator using thermal analysis", WSEAS Transactions on Systems, 10(7), 1006-1015.
- He, Y.J. and Sun, Q.P. (2011), "On non-monotonic rate dependence of stress hysteresis of superelastic shape memory alloy bars", Int. J. Solids Struct., 48(11-12), 1688-1695. https://doi.org/10.1016/j.ijsolstr.2011.02.017
- Hill, B.B., Faruqi, R.M., Newman, C.E., Arko, F.R., Fogarty, T.J. and Zarins, C.K. (2004), "Successful treatment of an above-knee femoropopliteal bypass anastomotic stenosis with the aSpire covered stent", Perspectives in Vascular Surgery and Endovascular Therapy, 16(3), 181-185. https://doi.org/10.1177/153100350401600306
- Khan, E. and Srinivasan, S.M. (2011), "A new approach to the design of helical shape memory alloy spring actuators", Smart Mater. Res., 2011,1-5.
- Mansfield, E.H. (1980), "On finite inextensional deformation of a helical strip", Int J. Nonlinear Mech.,15(6),459-467. https://doi.org/10.1016/0020-7462(80)90032-3
- Peultier, B., Ben Zineb, T. and Patoor, E. (2006), "Macroscopic constitutive law for SMA: Application to structure analysis by FEM", Mat. Sci. Eng: A, 438-440, 454-458. https://doi.org/10.1016/j.msea.2006.01.104
- Qidwai, M.A. and Lagoudas, D.C. (2000), "Numerical implementation of a shape memory alloy thermomechanical constitutive model using return mapping algorithms", Int. J. Numer. Meth. Eng., 47(6), 1123-1168. https://doi.org/10.1002/(SICI)1097-0207(20000228)47:6<1123::AID-NME817>3.0.CO;2-N
- Roguin, A., Grenadier, E., Linn, S., Markiewicz, W. and Beyar, R. (1999), "Continued expansion of the nitinol self-expanding coronary stent: angiographic analysis and 1-year clinical follow-up", Am Heart J., 138(2), 326-333. https://doi.org/10.1016/S0002-8703(99)70120-1
- Spinella, I. and Dragoni, E. (2010), "Analysis and design of hollow helical springs for shape memory actuators",J. Intel. Mat. Syst. Str., 21(2),185-199. https://doi.org/10.1177/1045389X09356021
- Sun, Q. and Li, Z. (2002), "Phase transformation in superelastic NiTi polycrystalline micro-tubes under tension and torsion-from localization to homogeneous deformation", Int. J. Solids Struct., 39(13-14), 3797-3809. https://doi.org/10.1016/S0020-7683(02)00182-8
- Timoshenko, S. (1956), Strength of Materials. Part 2 of 2: Advanced Theory and Problems, D. Van Nostrand Company Inc., Princeton.
- Toi, Y., Lee, J.B. and Taya, M. (2004), "Finite element analysis of superelastic, large deformation behavior of shape memory alloy helical springs", Comput. Struct., 82(20-21), 1685-1693. https://doi.org/10.1016/j.compstruc.2004.03.025
- vonRiesen, E.T. (2008), Active Hyperhelical Structures, Ph.D. Dissertation, University of Cambridge, Cambridge.
- Young, W.C. (1989), Roark's Formulas for Stress and Strain, (6th Ed.), McGraw Hill Book Company, New York London.
- Yates, S.J. and Kalamkarov, A.L. (2013), "Experimental study of helical shape memory alloy actuators: Effects of design and operating parameters on thermal transients and stroke", Metals, 3(1), 123-149. https://doi.org/10.3390/met3010123
- Zhou, X., You, Z. and Eaton-Evans, J. (2008), "A numerical study of a helical nitinol stent", Proceedings of the SMST-2007 the International Conference on Shape Memory and Superelastic Technologies, ASM International.
- Zhu, S. and Zhang Y. (2007), "A thermomechanical constitutive model for superelastic SMA wire with strain-rate dependence", Smart. Mater. Struct., 16(5), 1696-1707. https://doi.org/10.1088/0964-1726/16/5/023
피인용 문헌
- Modeling and control of a flexible continuum module actuated by embedded shape memory alloys vol.18, pp.4, 2016, https://doi.org/10.12989/sss.2016.18.4.663
- Optimum design and vibration control of a space structure with the hybrid semi-active control devices vol.19, pp.4, 2017, https://doi.org/10.12989/sss.2017.19.4.341
- Numerical Simulation and Experimental Study of a Simplified Force-Displacement Relationship in Superelastic SMA Helical Springs vol.19, pp.1, 2019, https://doi.org/10.3390/s19010050
- Dynamic behavior of a seven century historical monument reinforced by shape memory alloy wires vol.23, pp.4, 2019, https://doi.org/10.12989/sss.2019.23.4.337