DOI QR코드

DOI QR Code

Evaluation of Observation Environment for Weather Stations Located in Metropolitan Areas

GIS 자료를 활용한 대도시 지역 기상관측소 관측환경 평가

  • Yang, Ho-Jin (WISE project, Hankuk University of Foreign Studie) ;
  • Kim, Jae-Jin (Department of Environmental Atmospheric Sciences, Pukyong National University)
  • 양호진 (한국외국어대학교 차세대도시농림융합기상사업단) ;
  • 김재진 (부경대학교 환경대기과학과)
  • Received : 2015.04.11
  • Accepted : 2015.04.23
  • Published : 2015.04.30

Abstract

In this study, effects of buildings and topography on observation environment of weather stations located on mountainous terrain in metropolitan areas are investigated using a computational fluid dynamics (CFD) model. In order to investigate the characteristics of flow pattern around the weather stations, geographic information system (GIS) data are used to construct surface boundary input data of the CFD model. In order to evaluate effects of buildings and topography on wind speed and direction at three weather stations located in Deajeon, Busan, and Gwangju., target areas around the weather stations are selected and 16 cases with different inflow directions for each target area are considered. The simulated wind speed and direction at the weather stations are compared with those of inflow. As a whole, wind speed at the weather stations decreases due to drag effects of the buildings and topography in the upwind regions. This study shows that GIS data and the CFD model are successfully applicable to evaluation of observation environment for weather stations.

본 연구에서는 전산 유체 역학(CFD) 모델을 이용하여 건물과 지형이 대도시 내의 산지에 위치한 기상관측소의 관측환경에 미치는 영향을 조사하였다. 대상 지역의 관측소주변 흐름 특성을 조사하기 위해, GIS 자료로부터 건물과 지형 자료를 구현하였다. 구현한 자료를 CFD 모델 입력 자료로 사용하였고 관측소를 중심으로 16방위의 유입류을 가정하여 수치실험을 실시하였다. 유입된 흐름과 관측 지점에서 모의된 흐름을 비교한 결과, 전반적으로 관측소 주변에 건물과 고지형이 존재할 경우, 모의된 풍향과 풍속이 유입류와 크게 차이가 나타났다. 건물과 지형의 풍하층에서 발생하는 2차 순환범위 내에 관측소가 포함될 경우, 더욱 큰 차이가 나타났다. 전산유체역학 모델은 주변 지형환경에 따른 관측지역의 상세흐름 변화를 평가 하는데 매우 유용한 도구임을 확인하였다.

Keywords

References

  1. Baik, J.-J., S.-B. Park, and J.-J. Kim, 2009. Urban flow and dispersion simulation using a CFD model coupled to a mesoscale model, J. Appl. Meteor. Climatol., 48(8): 1667-1681. https://doi.org/10.1175/2009JAMC2066.1
  2. Britter, R.E. and S.R. Hanna, 2003. Flow and dispersion in urban areas, Annu. Rev. Fluid Mech 2003, 35(1): 469-496. https://doi.org/10.1146/annurev.fluid.35.101101.161147
  3. Castro, I.P. and D.D. Apsley, 1997. Flow and dispersion over topography: a comparison between numerical and laboratory data for twodimensional flows, Atmospheric Environment, 31(6): 839-850. https://doi.org/10.1016/S1352-2310(96)00248-8
  4. Choi, H.W., D.Y. Kim, J.-J. Kim, K.Y. Kim, and J.H. Woo, 2012. Study on dispersion characteristics for fire scenarios in a an urban area using a CFDWRF coupled model, Atmosphere, 22(1): 47-55 (in Korean with English abstract). https://doi.org/10.14191/Atmos.2012.22.1.047
  5. Garcia-Sanchez, C., D.A. Philips, C. Gorle, 2014. Quantifying inflow uncertainties for CFD simulations of the flow in downtown Oklahoma City, Building and Environment, 78: 118-129. https://doi.org/10.1016/j.buildenv.2014.04.013
  6. Hanna, S.R., M.J. Brown, F.E. Camell, S.T. Chan, W.J. Coirier, O.R. Hansen, A.H. Huber, S. Kim, and R.M. Reynolds, 2006. Detailed simulations of atmospheric flow and dispersion in downtown Manhattan: An application of five computational fluid dynamics models, Bulletin of the American Meteorological Society, 87(12): 1713-1726. https://doi.org/10.1175/BAMS-87-12-1713
  7. Kim, J.-J., 2007. The effects of obstacle aspect ratio on surrounding flows, Atmosphere, 17(4): 381-391 (in Korean with English abstract).
  8. Kim J.-J. and J.-J. Baik, 2005. An investigation of flow and scalar dispersion in an urban area using a CFD model, Atmosphere, 41: 821-837 (in Korean with English abstract).
  9. Kim, J.-J., E. Pardyjak, D.Y. Kim, K.S. Han, and B.H. Kwon, 2014. Effects of Building-Roof Cooling on Flow and Air Temperature in Urban Street canyons, Asia-Pacific Journal of Atmospheric Sciences, 50(3): 365-375. https://doi.org/10.1007/s13143-014-0023-8
  10. Lee, J.H., J.W. Choi, J.-J. Kim, and Y.C. Suh, 2009. The effects of an urban renewal plan on detailed air flow in an urban area, Journal of the Korea Association of Geographic Information Studies, 12(2): 69-81 (in Korean with English abstract).
  11. Lee, Y.S. and J.-J. Kim, 2011. Effects of an apartment complex on flow and dispersion in an urban area, Atmosphere, 21(1): 95-108 (in Korean with English abstract). https://doi.org/10.14191/ATMOS.2011.21.1.095
  12. Rakowska, A., K.C. Wong, T. Townsend, K.L. Chan, D. Westerdahl, S. Ng, G. Mocnik, L. Drinovec, and Z. Nin, 2014. Impact of traffic volume and composition on the air quality and pedestrian exposure in urban street canyon, Atmospheric Environment, 98: 260-270. https://doi.org/10.1016/j.atmosenv.2014.08.073
  13. Patankar, S.V., 1980. Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, pp. 197.
  14. Pontiggia, M., G. Landucci, V. Busini, M. Derudi, M. Alba, M. Scaioni, S. Bonvicini, V. Cozzani, and R. Rota, 2011. CFD model simulation of LPG dispersion in urban areas, Atmospheric Environment, 45(24): 3913-3923. https://doi.org/10.1016/j.atmosenv.2011.04.071
  15. Vardoulakis, S., M. Valiantis, J. Milner, and H. ApSimon, 2007. Operational air pollution modelling in the UK-Street canyon applications and challenges, Atmospheric Environment, 41(22): 4622-4637. https://doi.org/10.1016/j.atmosenv.2007.03.039
  16. Versteeg, H.K. and W. Malalasekera, 1995. An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Longman, Malaysia, pp. 257.
  17. Yakhot, V., S.A. Orszag, S. Thangam, T.B. Gatski, and C.G. Speziable, 1992. Development of turbulence models for shear flow by a double expansion technique, Physics of Fluids, 4(7): 1510-1520. https://doi.org/10.1063/1.858424

Cited by

  1. Effect of Artificial Changes in Geographical Features on Local Wind vol.32, pp.2, 2016, https://doi.org/10.7780/kjrs.2016.32.2.10
  2. Effects of Differential Heating by Land-Use types on flow and air temperature in an urban area vol.32, pp.6, 2016, https://doi.org/10.7780/kjrs.2016.32.6.5