DOI QR코드

DOI QR Code

A water stress evaluation over forest canopy using NDWI in Korean peninsula

NDWI를 활용한 한반도 지역의 산림 캐노피에 대한 water stress 평가

  • Seong, Nohun (Dept. of Spatial Information Engineering, Pukyong National University) ;
  • Seo, Minji (Dept. of Spatial Information Engineering, Pukyong National University) ;
  • Lee, Kyeong-Sang (Dept. of Spatial Information Engineering, Pukyong National University) ;
  • Lee, Changsuk (Dept. of Spatial Information Engineering, Pukyong National University) ;
  • Kim, Hyunji (Dept. of Spatial Information Engineering, Pukyong National University) ;
  • Choi, Sungwon (Dept. of Spatial Information Engineering, Pukyong National University) ;
  • Han, Kyung-Soo (Dept. of Spatial Information Engineering, Pukyong National University)
  • 성노훈 (부경대학교 공간정보시스템공학과) ;
  • 서민지 (부경대학교 공간정보시스템공학과) ;
  • 이경상 (부경대학교 공간정보시스템공학과) ;
  • 이창석 (부경대학교 공간정보시스템공학과) ;
  • 김현지 (부경대학교 공간정보시스템공학과) ;
  • 최성원 (부경대학교 공간정보시스템공학과) ;
  • 한경수 (부경대학교 공간정보시스템공학과)
  • Received : 2015.02.11
  • Accepted : 2015.02.25
  • Published : 2015.04.30

Abstract

Leaf water content is one of important indicators that shows states of vegetation. It is important to monitor vegetation water content using remote sensing for forest management. In this study, we investigated the degree of water stress in Korean peninsula with Normalized Difference Water Index (NDWI) to study the water content of vegetation canopy. We calculated the NDWI using SPOT/VEGETATION S10 channel data over forest from 1999 to 2013. We calculated Simple Moving Average (SMA) to remove temporal noises of NDWI in time series, and used standardized anomaly to investigate temporal changes. We classified the NDWI anomalies into three scales (low, moderate, and high) in order to monitor intuitively. We also investigated suitability of the NDWI as an evaluation criterion about water stress of vegetation canopy by comparing and verifying forest fires damaged area over 150 ha. Consequently, huge forest fire occurred 24 times during the study period. Also, negative anomalies appeared in every forest fire location and their neighboring areas. In particular, we found huge forest fires where NDWI anomalies were in 'high' scale.

잎의 수분 함유량은 식물의 건강상태를 나타내는 중요한 척도 중 하나로써, 이를 원격탐사를 활용 하여 모니터링 하는 것은 산림관리에 있어서 매우 중요하다. 본 연구에서는 식생 캐노피의 수분량을 연구하는데 유용한 지수인 Normalized Difference Water Index (NDWI)를 이용하여 한반도 산림의 water stress 정도를 알아보고자 한다. SPOT/VEGETATION S10 채널자료를 1999년부터 2013년까지 취득하여 NDWI 를 산출하였고, 데이터의 노이즈를 제거하기 위하여 단순이동평균, NDWI의 시간적 변화를 파악하기 위하 여standardized anomaly를 수행했으며, 직관적인 모니터링을 위해 NDWI anomaly를 등급화 하였다. 또한 피해면적 150 ha 이상의 대형 산불과 비교 검증을 통해, 산림 캐노피의 water stress 평가 인자로서 NDWI의 적합성을 파악하였다. 그 결과 연구 기간 중 대형 산불은 총 24회 발생하였으며 모든 발생 지점 및 인접 지역에서 음의 anomaly가 나타났다. 특히 NDWI anomaly의 등급이 'high'일 경우 대형 산불이 빈번하게 발생하는 것을 확인하였다.

Keywords

References

  1. Chen, D., T.J. Jackson, F. Li, M.H. Cosh, C. Walthall and M. Anderson, 2003. Estimation of vegetation water content for corn and soybeans with a normalized difference water index (NDWI) using Landsat Thematic Mapper data, Proc. of Geoscience and Remote Sensing Symposium, France, 4: 2853-2856.
  2. Dennison, P.E., D.A. ROBERTS, S.H. PETERSON and J. RECHEL, 2005. Use of Normalized Difference Water Index for monitoring live fuel moisture, International Journal of Remote Sensing, 26(5): 1035-1042. https://doi.org/10.1080/0143116042000273998
  3. Gao, B.C., 1996. NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space, Remote Sensing of Environment, 56(3): 257-266.
  4. Gu, Y., J.F. Blown, J.P. Verdin, and B. Wardlow, 2008. A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States, Geophysical Research Letters, 34(6): L06407. https://doi.org/10.1029/2006GL029127
  5. Haung, J., D. Chen, and M.H. Cosh, 2009. Sub-pixel reflectance unmixing in estimating vegetation water content and dry biomass of corn and soybeans cropland using normalized difference water index (NDWI) from satellites, International Journal of Remote Sensing, 30(8):2075-2104. https://doi.org/10.1080/01431160802549245
  6. Horion, S., H. Eerens, B. Tychon, and P. Ozer, 2005. Monitoring of the 2003 summer drought in Belgium with the NDWI applied on spotvegetation data, Proc. of the 2nd international vegetation user conference. 1998-2004: 6 years of operational activities, European Communities.
  7. Kim, I.H., K.S. Han ,and S.I. Kim, 2011. Vegetation Interannual variavility over Korea using 10 years 1KM NDVI data, Korea Journal of Remote Sensing, 27(1): 11-2 (in Korean with English abstract).
  8. Kim, G.J., D.S. Kim, J.I. Jo, S.W. Hong ,and Y.W. Lee, 2013. EOF Analysis of Satellite-based Drought Indices: A Case of Inner Mongolian Region, Climate Research, 8(4): 309-319 (in Korean with English abstract). https://doi.org/10.14383/cri.2013.8.4.309
  9. Kim, S.H. and D.H. Jang, 2013. Analysis of Yearly Mean Vegetation Index Using SPOT-VGT S10 NDVI Data in Chungcheongnam-do, South Korea, Climate Research, 8(4): 311-321 (in Korean with English abstract).
  10. Kim, Y.H., 2014. IPCC fifth climate change evaluation report contents and implication, In Forest Science Newsflash, Korea Forest Research Institute, Republic of Korea (In Korean).
  11. Korea Meteorological Administration, 2012. Korea climate change prospect report, Republic of Korea.
  12. Lee, G.R., Y.S. Kim, G.S. Han, C.S. lee, and J.M. Yeom, 2008. Vegetation water status monitoring around China Mongolia Desert using satellite data, Journal of the Korean Association of Geographic Information Studies, 11(4): 94-100 (In Korean with English abstract).
  13. National Disaster Management Institute, 2013. Monitoring national forest fire occurrence using satellite image, Republic of Korea.
  14. Thomas, J.J., D. Chen, M. Cosh, F. Li, M. Anderson, C. Walthall, P. Doriaswamy, and E.R. Hunt, 2004. Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans, Remote Sensing of Environment, 92(4): 475-482. https://doi.org/10.1016/j.rse.2003.10.021
  15. Won, M.S., K.H. Kim, and S.W. Lee, 2014. Analysis of burn severity in large-fire area using SPOT5 images and field survey data, Korean Journal of Agricultural and Forest Meteorology, 16(2): 114-124 (in Korean with English abstract). https://doi.org/10.5532/KJAFM.2014.16.2.114
  16. Yeom, J.M., G.S. Han, C.S. Lee, Y.Y. Park, and Y.S. Kim, 2008. A detection of vegetation variation over North Korea using SPOT/VEGETATION NDVI, Journal of the Korea Association of Geographic Information Studies, 11(2): 28-37 (in Korean with English abstract).

Cited by

  1. Classification of Forest Vertical Structure in South Korea from Aerial Orthophoto and Lidar Data Using an Artificial Neural Network vol.7, pp.10, 2017, https://doi.org/10.3390/app7101046
  2. 스마트 팜을 위한 UAS 모니터링의 자연재해 작물 피해 분석 vol.38, pp.6, 2020, https://doi.org/10.7848/ksgpc.2020.38.6.583