DOI QR코드

DOI QR Code

Study on Criticism and Alternative on the History of Mathematics Described in the Secondary School Mathematics Textbooks

중등 수학교과서가 다루는 수학사의 비판과 대안

  • Park, Jeanam (Department of mathematics education, Inha University) ;
  • Jang, Dongsook (Department of mathematics, Inha University)
  • Received : 2014.12.26
  • Accepted : 2015.03.09
  • Published : 2015.05.15

Abstract

The purpose of this article is to discuss some of the most commonly repeated misconceptions on the history of mathematics described in the secondary school mathematics textbooks, and recommend that we should include mathematical transculture in the secondary school mathematics. School mathematical history described in the texts reflects the axial age, and deals with mathematical transculture from the ancient Greek into Europe excluding the ancient Egypt, Old Babylonia, and Islamic mathematics. We discuss about them through out the secondary school textbooks and give some alternatives for the historical problems.

본 논문의 목적은 중등 수학교과서에 기술되어 있는 수학사의 주요 문제점을 알아보고, 그리고 중등 수학교과서에 수학문화의 전이가 반영되어야함을 주장하는데 있다. 교과서에서 다루는 수학사는 기축시대와 고대 그리스에서 고대 이집트, 고 바빌로니아, 그리고 이슬람 수학을 제외한 유럽으로의 수학문화의 전이가 반영되어 있다. 우리는 이를 알아보고 수학사적 문제의 대안을 제시하였다.

Keywords

References

  1. 고호경 외 (2012). 중학교 수학(3). 서울: 교학사.(Kho, H. et al. (2012). Middle school mathematics(3). Seoul: Kyohak-Sa.)
  2. 교육과학기술부 (2011). 2009 개정 교육과정에 따른 수학과 교육과정 연구. 2011-11.(The Ministry of Education, Science and Technology. (2011). A study on the mathematics curriculum by 2009 revised curriculum. 2011-11.)
  3. 교육부 (2015). 초등수학 5-1. 서울: (주)천재교육.(The Ministry of Education. (2015). Elementary school mathematics 5-1. Seoul: Chunjae Eud.)
  4. 김서령 외 (2012a). 중학교 수학(1). 서울: 천재교육.(Kim, S. et al. (2012a). Middle school mathematics(1). Seoul: Chunjae Edu.)
  5. 김서령 외 (2012b). 중학교 수학(2). 서울: 천재교육.(Kim, S. et al. (2012b). Middle school mathematics(2). Seoul: Chunjae Edu.)
  6. 김용운 (1975). 수학의 흐름. 서울: 배영사.(Kim, Y. (1975). The flow of mathematics. Seoul: Baeyoung-Sa.)
  7. 김용운.김용국 (1985). 수학의 흐름. 서울: 전파과학사.(Kim, Y. and Kim. Y. (1985). The flow of mathematics. Seoul: S-Wave Com.)
  8. 김용운.김용국 (1991). 재미있는 수학여행. 서울: 김영사.(Kim, Y. and Kim. Y. (1991). A funny journey of mathematics. Seoul: Gimmyoung Pub.)
  9. 김용운.김용국 (1996). 중국수학사. 서울: 민음사.(Kim, Y. and Kim. Y. (1996). The history of mathematics of China. Seoul: Minumsa.)
  10. 김용운.김용국 (2012). 한국 수학사. 경기도: 살림Math.(Kim, Y. and Kim. Y. (2012). The history of mathematics of Korea. Gyeonggy: Sallimbooks.)
  11. 김원경 외 (2012). 중학교 수학(2). 서울: 비상교육.(Kim, W. et al. (2012). Middle school mathematics(2). Seoul: Visang Edu.)
  12. 김원경 외 (2014). 고등학교 수학I. 서울: 비상교육.(Kim, W. et al. (2012). High school mathematics I . Seoul: Visang Edu.)
  13. 김창동 외 (2014a). 고등학교 미적분I. 서울: (주)교학사.(Kim, C. et al. (2014a). High school calculus I . Seoul: Kyohak-Sa.)
  14. 김창동 외 (2014b). 고등학교 미적분II. 서울: (주)교학사.(Kim, C. et al. (2014b). High school calculus II . Seoul: Kyohak-Sa.)
  15. 김창동 외 (2014c). 고등학교 기하와 벡터. 서울: (주)교학사.(Kim, C. et al. (2014c). High school geometry and linear algebra. Seoul: Kyohak-Sa.)
  16. 김창동 외 (2014d). 고등학교 수학II. 서울: (주)교학사.(Kim, C. et al. (2014d). High school mathematics II . Seoul: Kyohak-Sa.)
  17. 류희찬 외 (2013a). 중학교 수학(1). 서울: 천재교과서.(Lew, H. et al. (2013a). Middle school mathematics(1). Seoul: Chunjae Edu.)
  18. 류희찬 외 (2013b). 중학교 수학(2). 서울: 천재교과서.(Lew, H. et al. (2013b). Middle school mathematics(2). Seoul: Chunjae Edu.)
  19. 류희찬 외 (2013c). 중학교 수학(3). 서울: 천재교과서.(Lew, H. et al. (2013c). Middle school mathematics(3). Seoul: Chunjae Edu.)
  20. 류희찬 외 (2014a). 고등학교 수학I. 서울: 천재교과서.(Lew, H. et al. (2014a). High school mathematics I . Seoul: Chunjae Edu.)
  21. 류희찬 외 (2014b). 고등학교 수학II. 서울: 천재교과서.(Lew, H. et al. (2014b). High school mathematics II . Seoul: Chunjae Edu.)
  22. 류희찬 외 (2014c). 고등학교 기초수학. 서울: 천재교과서.(Lew, H. et al. (2014c). High school elementary mathematics. Seoul: Chunjae Edu.)
  23. 러시아 과학 아카데미 철학연구소 (2008). 세계철학사1(이을호 역음). 서울: 중원문화.(Akademiya Nauk SSSR. (1957). History of philosophy 1. Moscow: RAC.)
  24. 박종률 외 (2013). 예술(음/미)과 수학 통합 교수 학습자료 개발. 서울: 한국과학창의재단 2013-5.(Park, J. et al. (2013). Development of teaching and learning materials integrating art and mathematics. Kofac 2013-5.)
  25. 박제남 (2013). 현대대수학. 서울: 경문사.(Park, J. (2013). The element of modern algebra, Seoul: Kyungmoon-Sa.)
  26. 박제남 (2014a). 황금비와 수학교육담론. 한국수학교육학회지 시리즈 E <수학교육 논문집>, 28(2), 281-302.(Park, J. (2014a). The golden ratio and mathematics education issues, J. Korea Soc. Math. Ed. Ser. E: Communications of Mathematical Education 28(2), 218-302.)
  27. 박제남 (2014b). 초등학교 수학 교과서가 다루는 수학사의 보완 방안-수학문화의 전이를 중심으로. 한국수학교육학회지 시리즈 E <수학교육 논문집>, 28(4), 493-511.(Park, J. (2014a). A direction of a complement of the elementary school mathematics history described in the texts-Focusing on the mathematical trnsculture, J. Korea Soc. Math. Ed. Ser. E:Communications of Mathematical Education 28(4), 493-511.)
  28. 박제남.남호영 (2004). ${\pi}$-4천년 역사의 흔적. 서울: 교우사.(Park, J. and Nam, H. (2004). ${\pi}$ : trace of a history. Seoul: Kyowoo-Sa.)
  29. 손주영.송경근 (2011). 이집트역사. 서울: 가람기획.(Son, J. and Song, K. (2011). A history of Egypt. Seoul: Garam.)
  30. 신준국 외 (2012). 중학교 수학(3). 서울: 두배의느낌.(Shin, J. et al. (2012). Middle school mathematics(3). Seoul: DubaeBook.)
  31. 신항균 외 (2014). 고등학교 미적분II. 서울: (주)지학사.(Shin H. et al. (2014). High school calculus II . Seoul: Jihak Pub. Com.)
  32. 우정호 외 (2012a). 중학교 수학(2). 서울: 두산동아.(Woo, J. et al. (2012a). Middle school mathematics(2). Seoul: Doosan Dongah.)
  33. 우정호 외 (2012b). 중학교 수학(3). 서울: 두산동아.(Woo, J. et al. (2012a). Middle school mathematics(3). Seoul: Doosan Dongah.)
  34. 우정호 외 (2014). 고등학교 기하와 벡터. 서울: 두산동아.(Woo, J. et al. (2012a). High school geometry and linear algebra. Seoul: Doosan Dongah.)
  35. 이강섭 외 (2014a). 고등학교 수학I. 서울: (주)미래엔.(Lee, K. et al. (2014a). High school mathematics I . Seoul: Mirae N Com.)
  36. 이강섭 외 (2014b). 고등학교 수학II. 서울: (주)미래엔.(Lee, K. et al. (2014b). High school mathematics II . Seoul: Mirae N Com.)
  37. 이종우(편저) (1998). 기하학의 역사적 배경과 발달. 서울: 경문사.(Lee, J. (Edited). (1998). Historical background and development of geometry. Seoul: Kyungmoon-Sa.)
  38. 이정우 (2014). 세계철학사1. 서울: 도서출판 길.(Lee, J. The history of world philosophy 1. Seoul: Booksgil.)
  39. 이준열 외 (2012). 중학교 수학(3). 서울: 천재교육.(Lee, J. Y. et al. (2012). Middle school mathematics(3). Seoul: Chunjae Edu.)
  40. 이준열 외 (2014a). 고등학교 수학II. 서울: 천재교육.(Lee, J. Y. et al. (2012). High school mathematics II . Seoul: Chunjae Edu.)
  41. 이준열 외 (2014b). 고등학교 기초수학. 서울: 천재교육.(Lee, J. Y. et al.(2012). High school elementary mathematics. Seoul: Chunjae Edu.)
  42. 정상권 외 (2012). 중학교 수학(1). 서울: (주)금성출판사.(Chung, S. K. et al. (2012). Middle school mathematics(1). Seoul: Kumsung Pub. Com.)
  43. 정상권 외 (2014). 고등학교 미적분II. 서울: (주)금성출판사.(Chung, S. K. et al. (2014). High school calculus II. Seoul: Kumsung Pub. Com.)
  44. 정수용.주미경.송륜진 (2014). 수학교과서 속 수학자들에 대한 비판적 분석-융합적 협업으로서 다문화교육 관점에서. 교과교육학연구, 18(2), 441-470.(Jeong, S., Ju, M. K. and Jin S. R. (2014). A critical analysis of the didactic use of historical mathematicians in seventh grade mathematics textbook. Journal of research in curriculum instruction 18(2), 441-470.)
  45. 정해남. (2012) 예비수학교사를 위한 수학사 활용 방안. 한국수사학학회지, 25(3), 141-157.(Jung, H. N. (2012). Using history of mathematics for perspective mathematics teacher. The Korean Journal for History of Mathematics 25(3), 141-157.)
  46. 한경혜 (2006). 수학과 교수.학습에서 수학사 활용의 교육적 함의: 수월성 교육을 중심으로 한 미적분 지도의 예. 한국수학사학회지, 19(4), 31-62.(Han, K. H. (2006). Didactical meaning of using history of mathematics in teaching and learning mathematics. The Korean Journal for History of Mathematics 19(4), 31-62.)
  47. 황선욱 외 (2014a). 고등학교 미적분II. 경기도: 좋은책 신사고.(Hwang, S. et al. (2014a). High school calculus II . Seoul: Sinsago.)
  48. 황선욱 외 (2014b). 고등학교 기하와 벡터. 서울: 좋은책 신사고.(Hwang, S. et al. (2014b). High school geometry and linear algebra. Seoul: Sinsago.)
  49. 황선욱 외 (2014c). 고등학교 수학I. 서울: 좋은책 신사고.(Hwang, S. et al. (2014c). High school mathematics I. Seoul: Sinsago.)
  50. 허민 외 (2012a). 중학교 수학(1). 서울: 대교.(Her, M. et al. (2012a). Middle school mathematics(1). Seoul: Daekyo.)
  51. 허민 외 (2012b). 중학교 수학(3). 경기도: 대교.(Her, M. et al. (2012b). Middle school mathematics(2). Seoul: Daekyo.)
  52. Aaboe, A. (1998). Episodes from the early history of mathematics. 12th ed. Washington: MAA.
  53. Aaboe, A. (1954). al-Kashi's iteration method for the determination of $sin1^{\circ}$. Scripta Math. 20, 24 -29.
  54. Al-Khalili, J. (2010). The house of wisdom: How Arabic science saved ancient knowledge and gave us the Renaissance. New York: Penguin Books.
  55. Anderson, M., Katz, V., and Wilson, R(Editors). (2004). Sherlock Holmes in Babylon. Washington: MAA.
  56. Aristoteles. (2009). Politika(천병희 옮김). 서울: 도서출판 숲.(Aristoteles. (1957). Politica(Oxford Classical Text)(Edited: R. Ross). Oxford: Oxford Univ. Press.)
  57. Armstrong, K. (2010). 축의 시대(정영목 옮김). 서울: 교양인.(Armstrong, K. (2007). The great transformation. New York: Anchor.)
  58. Baragar, A. (2002). Constructions using a compass and twice-notched straightedge. Amer. Math. Monthly 109, 151-164. https://doi.org/10.2307/2695327
  59. Bashmakova, I., and Smirnova, G. (2000). The beginnings and evolution of algebra. Washington: MAA.
  60. Beard, C. (1968). The Fibonacci drawing board-design of the great pyramid of Giza. Fibonacci Quarterly 6, 66-68.
  61. Berggren, J. L. (1986). Episodes in the mathematics of medieval Islam. New York: Springer.
  62. Bernal, M. (2011). 블랙 아테나, 제1권(오흥식 옮김). 서울: 소나무.(Bernal, M. (1987). Black Athena, Vol. I. New Jersey: Rutgers Univ. Press.)
  63. Bernal, M. (2012). 블랙 아테나, 제2권(오흥식 옮김). 서울: 소나무.(Bernal, M. (1991). Black Athena, Vol. II. New Jersey: Rutgers Univ. Press.)
  64. Bernal, M. (1992). Animadversions on the origines of western science. Isis 83, 596-607. https://doi.org/10.1086/356291
  65. Bernal, M. (1994). Response to Robert Palter. Hist. Sci. 32, 445-468. https://doi.org/10.1177/007327539403200404
  66. Bold, B. (1969). Famous problems of geometry and how to solve them. New York: Dover.
  67. Bonnard, A. (2011a). 그리스인 이야기1(김희균 옮김). 서울: 책과함께.(Bonnard, A.(1954). Civilisation Grecque, Vol. 1. Vevey: Les Editions de L'aire.)
  68. Bonnard, A. (2011b). 그리스인 이야기2(양영란 옮김). 서울: 책과함께.(Bonnard, A. (1957). Civilisation Grecque, Vol. 2. Vevey: Les Editions de L'aire.)
  69. Boyer, B. (1991). A history of mathematics, 2nd ed. New York: John Wiley.
  70. Bradly, R. (2007). Euler, D'Alembert and the logarithm function, Leonhard Euler: Life, work and legacy: R. Bradley and C. Sandifer(Editors). New York: Elsevier.
  71. Bressoud, D. (2002). Was calculus invented in India?. College Math. J. 33, 2-13. https://doi.org/10.2307/1558972
  72. Broug, E. (2011). Islamic geometric patterns. London: Thames & Hudson.
  73. Brown, E. (1999). Square roots from 1; 24, 51, 10 to Dan Shanks. College Math. J. 30, 82-95. https://doi.org/10.2307/2687717
  74. Burton, D. (2007). The history of mathematics, 6th ed. New York: McGraw-Hill.
  75. Cajori, F. (1913). History of the exponential and logarithmic concepts. Amer. Math. Monthly 20(3), 5-14. https://doi.org/10.2307/2973509
  76. Cajori, F. (1928). A history of mathematical notations, Vol. I. La Salle: The Open Court Pub. Com.
  77. Cajori, F. (1991). A history of mathematics, 5th ed. Rhode Island: AMS.
  78. Chace, A. (1979). The Rhind mathematical papyrus. Virginia: NCTM.
  79. Chang, W. and Gordon, A. (2014). Trisecting angles in Pythagorean triangles. Amer. Math. Monthly 121, 625-631. https://doi.org/10.4169/amer.math.monthly.121.07.625
  80. Chinese Text Project: http://ctext.org/sunzi-suan-jing. Last time accessed 22 December 2014.
  81. Clagett, M. (1999). Ancient Egyptian science, A source book Vol. 3: Ancient Egyptian mathematics. Philadelphia: APS.
  82. Corbin, H. (1997). 이슬람 철학사(김정위 옮김). 서울: 서광사.(Corbin, H. (1964). Histoire de la philosopbie Islamique. Paris: Gallimard.)
  83. Couprie, D. (2004). How Thales was able to "predict" a solar eclipse without the help of alleged Mesopotamian wisdom. Early Science and medicine 9(4), 321-337. https://doi.org/10.1163/1573382043004631
  84. Curchin, I. and Fischler, R. (1981). Hero of Alexandria's numerical treatment of division in extreme and mean ratio and its implications. Pheonix 35(2), 129-133. https://doi.org/10.2307/1087332
  85. Dahan-Dalmedico, A. and Peiffer, J. (2010). History of mathematics. Washington: MAA.
  86. Derbyshire, J. (2006). Unknown quantity. Washington: Joseph Henry Press.
  87. Descartes, R. (1954). The Geometry of Rene Descartes with a facsimile of the first edition (Translator: D. Smith). New York: Dover.
  88. Dunham, W. (1991). Journey through genius. New York: Penguin Books.
  89. Durant, W. (2011). 문명이야기, 그리스 문명 2-1(김운한.권영교 옮김). 서울: 민음사.(Durant, W. (1939). The story of civilization vol II.: The life of Greece. New York: Simon & Schuster)
  90. Elam, K. (2011). Geometry of design, 2nd ed. New York: Princeton Architectural Press.
  91. Engels, H. (1977). Quadrature of the circle in ancient Egypt, Historia Mathematica 4, 137-140. https://doi.org/10.1016/0315-0860(77)90104-5
  92. Euclid. (1956). The thirteen books of the elements(Translated: T. L. Heath). New York: Dover.
  93. Eves, H. (1983). Great moments in mathematics before 1650. Washington: MAA.
  94. Eves, H. (1990). An introduction to the history of mathematics, 6th ed. New York: The Saunders Series.
  95. Fowler, D. (2003). The mathematics of Plato's academy, A new construction, 2nd ed. Oxford: Clarendon Press.
  96. Friberg, J. (2005). Unexpected links between Egyptian and Babylonian mathematics. New Jersey: World Scientific.
  97. Friberg, J. (2007a). A remarkable collection of Babylonian mathematical texts. New York: Springer.
  98. Friberg, J. (2007b). Amazing traces of a Babylonian origin in Greek mathematics. New Jersey: World Scientific.
  99. Fritz, K. (1945). The discovery of incommensurability by Hippasus of Metapontum. Annals of Math. 46, 242-264. https://doi.org/10.2307/1969021
  100. Gandz, S. (1926). The origin of the term "algebra". Amer. Math. Monthly 33, 437-440. https://doi.org/10.2307/2299605
  101. Gandz, S. (1936). The sources of al-Khowarizmi's algebra. Osiris 1, 263-277. https://doi.org/10.1086/368426
  102. Gandz, S. (1937). The origin and development of the quadratic equations in Babylonian, Greek, and early arabic algebra. Osiris 3, 405-557. https://doi.org/10.1086/368481
  103. Gast, K. (2000). Le Corbusier, Paris-Chandigarh. Boston: Birkhauser.
  104. Gillings, R. (1982). Mathematics in the time of the pharaohs. New York: Dover.
  105. Gonzalez-Velasco, E. (2011). Journey through mathematics. New York: Springer.
  106. Grabiner, J. (1995). Descartes and problem-solving. Math. Mag. 68, 83-97. https://doi.org/10.2307/2691183
  107. Gutas, D. (2013). 그리스 사상과 아랍문명(정영목 옮김). 경기도: 글항아리.(Gutas, D. (1998). Greek thought, Arabic culture: The Graeco-Arabic Translation Movement in Baghdad and Early 'Abbasid Society (2nd-4th/8th-10th Centuries). London: Routledge.)
  108. Hahn, A. (1998). Basic calculus: From Archimedes to Newton to its role in science. New York: Springer.
  109. Hambidge, J. (1920a). The elements of dynamic symmetry. New Haven: Yale Univ. Press.
  110. Hambidge, J. (1920b). Dynamic symmetry: The Greek vase. New Haven: Yale Univ. Press.
  111. Hambidge, J. (1924). The Parthenon and the other Greek temples. New Haven: Yale Univ. Press.
  112. Heath, T. (1910). Diophantus of Alexandria, 2nd ed. Cambridge: Cambridge Univ. Press.
  113. Heath, T. (1949). Mathematics in Aristotle. Oxford: Clarendon Press.
  114. Heath, T. (1981a). A history of Greek mathematics, I: From Thales to Euclid. New York: Dover.
  115. Heath, T. (1981b). A history of Greek mathematics, II: From Aristarchus to Diophantus. New York: Dover.
  116. Heath, T(Edited). (2002). The work of Archimedes. New York: Dover.
  117. Heath, T. (2004). Aristarchus of Samos: The ancient Copernicus. New York: Dover.
  118. Heidarzadeh, T. (2008). A history of physical theories of comets-From Aristotle to Whipple. New York: Springer.
  119. Herodotos. (2012). 역사(천병희 옮김). 경기도: 도서출판 숲.(Herodotus. (1927). Herodoti historiae, 2vol(Oxford Classical Text)(Edited: C. Hude). Oxford: OUP.)
  120. Hoyrup, J. (2002). Lengths, widths, surfaces, A portrait of Old Babylonian algebra and its kin. New York: Springer.
  121. Hughes, H. (1986). Gerard of Cremon's translation of Al-Khwarizmi's al-jabr: A critical edition. Mediaeval Studies 48, 211-263. https://doi.org/10.1484/J.MS.2.306339
  122. Iamblichus. (1991). On the Pythagorean way of life(Text, Translation, and Notes: J. Dillon and J. Hershbell). Atlanta: Scholars Press.
  123. Jepson, C. and Yang, R. (1998). Making square from Pythagorean triangles. College Math. J. 29(4), 284-288. https://doi.org/10.2307/2687683
  124. Karpinski, L. (1915). Robert of Chester's Latine translation of the algebra of Al-Khowarizmi. London: MacMillan Company.
  125. Katz, V. (1995). Ideas of calculus in Islam and India. Math. Mag. 68, 163-174. https://doi.org/10.2307/2691411
  126. Katz, V(Eitor). (2007). The mathematics of Egypt, Mesopotamia, China, India, and Islam, A source book. New Jersey: Princeton Univ. Press.
  127. Katz, V. (2009). A history of mathematics: An introduction. 3rd ed. New York: Addison-Wesley.
  128. Kitto, H. (2004). 그리스 문화사(김진경 역). 서울: 탐구당.(Kitto, H. (1951). The Greeks. New York: Penguin Books.)
  129. Klein, F. (2012). 19세기 수학의 발전에 대한 강의(한경혜 옮김). 경기도: 나남.(Klein, F. (1926). Vorlesungen uber die entwicklung der mathematik Im 19. Jahrhundert. Berlin: Springer.)
  130. Kline, M. (1972). Mathematical thought from ancient to modern times, Vol. 1. Oxford: Oxford Univ. Press.
  131. Lay-Yong, L. and Tian-Se, A. (1986). Circle measurements in ancient China. Historia Mathematica 13, 325-340. https://doi.org/10.1016/0315-0860(86)90055-8
  132. Livio, M. (2002) The golden ratio. New York: Broadway Books.
  133. Livio, M. (2009). 신은 수학자인가?(김정은 옮김). 서울: 열린과학.(Livio, M. (2009). Is god a mathematician? New York: Simon & Schuster.)
  134. Lorch, R. (2001). Greek-Arabic-Latin: The transmission of mathematical texts in the middle ages. Science in Context 14, 313-331.
  135. Lumpkin, B. (1980). The Egyptians and Pythagorean triples. Historia Mathematica 7, 186-187. https://doi.org/10.1016/0315-0860(80)90037-3
  136. Lyons, J. (2009). The house of wisdom. New York: Bloomsbury Press.
  137. Mardia, K. (2009). "Omar Khayyam, Rene Descartes and solutions to algebraic equations (abstract)," International Congress in Commemorating Hakim Omar Khayyam Neyshabouri.(900th Death Anniversary 9). Neyshabour, Iran, 17-19 May.
  138. Markowsky, G. (1992). Misconceptions about the golden ratio. College Math. J. 23, 1-19.
  139. Martin, J. (2010). The Helen of geometry. College Math. J. 41, 17-28. https://doi.org/10.4169/074683410X475083
  140. Martin, T. (2011). 고대 그리스의 역사(이종인 옮김). 서울: 가람기획.(Martin, T. (1996). Ancient Greece. Connecticut: Yale Univ. Press.)
  141. Mendelssohn, K. (1974). The riddle of the pyramids. London: Thames and Hudson.
  142. Merzbach, U. and Boyer, C. (2011). A history of mathematics, 3rd ed. New Jersey: Wiley.
  143. Miatello, L. (2005). The design of the Snefru pyramids at Dahshur and the Netjerikhet pyramid at Saqqara. PalArch's Journal Archaeology of Egypt/Egyptology 1(1), 1-11.
  144. Mohanty, S. and Mohanty, S. P. (1990). Pythagorean Numbers. Fibonacci Quarterly 28(1), 31-42.
  145. Nahin, P. (1998). The story of ${\sqrt{-1}}$. New Jersey: Princeton Univ. Press.
  146. Neugebauer, O. (1957). The exact sciences in antiquity, 2nd ed. New York: Dover.
  147. Newton, I. (1999). The principia(A new translation: I. B. Cohen and A. Whitman). California: Univ. of California Press.
  148. Ngo, V. and Watson, S. (1998). Who cares if $x^2+1=0$ has a solution? College Math. J. 29(2), 141-144. https://doi.org/10.2307/2687708
  149. Ore, O. (1976). Number theory and its history. New York: Dover.
  150. Osserman, R. (2010). Mathematics of the Gateway Arch. AMS Notices 57(2), 220-229.
  151. Ostermann, A. and Wanner, G. (2012). Geometry by its history. New York: Springer.
  152. Panchenko, D. (1994). Thales's prediction of a solar eclipse. J . for The History of Astronomy 25, 275-288. https://doi.org/10.1177/002182869402500402
  153. Palter, R. (1993). Black Athena, Afro-centrism, and the history of science. Hist. Sci. 31, 227-287. https://doi.org/10.1177/007327539303100301
  154. Paton, W. R(Translated). (1979). The Greek anthology (BOOKS XIII-XVI). Massachusetts: Harvard Univ. Press.
  155. Phillips, G. (1981). Archimedes the numerical analyst. Amer. Math. Monthly 88(3), 165-169. https://doi.org/10.2307/2320460
  156. Pliny. (1967). Natural history(Translation: H. Rackham). Massachusetts: Harvard Univ. Press.
  157. Platon. (2000). Timaios(박종현.김영균 옮김). 경기도: 서광사.(Platon. (1902). Platonis Opera, Tomus IV(Oxford Classical Text)(Edited: J. Burnet). Oxford: Oxford Univ. Press.)
  158. Platon. (2009). Menon(이상인 옮김). 서울: 이제이북스.(Platon. (1903). Platonis Opera, Tomus III(Oxford Classical Text)(Edited: J. Burnet). Oxford: Oxford Univ. Press.)
  159. Platon. (2011). Phaedrus(조대호 역해). 서울: 문예출판사.(Platon. (1910). Platonis Opera, Tomus II(Oxford Classical Text)(Edited: J. Burnet). Oxford: Oxford Univ. Press.)
  160. Platon. (2013). Theaetetos(정준영 옮김). 서울: 이제이북스.(Platon. (1995). Platonis Opera, Tomus I(Oxford Classical Text)(Edited: W. Hicken). Oxford: Oxford Univ. Press.)
  161. Plutarch. (2014). Parallel lives(플루타르크 영웅전I)(홍사중 옮김). 서울: 동서문화사.(Plutarch. (1906). Plutarch's lives, Vol.1(Edited: A. Clough; Translation: J. Dryden). New York: Modern Library.)
  162. Proclus. (1909). The complete works of Plutarch: Essays and miscellanies, Vol. III. New York: Crowell.
  163. Ptolemy. (1998). Almagest(Translation: G. Toomer). Princeton: Princeton Univ. Press.
  164. Querejeta, M. (2011). On the eclipse of Thales, cycles and probability. Culture And Cosmos 15, 5-16.
  165. Rashed, R. (1989). Problems of the transmission of Greek scientific thought into Arabic: Examples from mathematics and optics. His. Sci. 27, 199-209. https://doi.org/10.1177/007327538902700204
  166. Rashed, R. (2015). Classical mathematics from Al-Khwarizmi to Descartes(Translated by M. Shank). New York: Routledge.
  167. Robert, J. (2000). 로마에서 중국까지(조성애 옮김). 서울: 이산.(Robert. J. (1993). De Rome a la Chine. Paris: Les Belles Lettres.)
  168. Robins, G. and Shute, C. (1987). The Rhind mathematical papyrus. New York: Dover.
  169. Robson, E. (2001). Neither Sherlock Holmes nor Babylon: A reassessment of Plimpton 322. Historia Mathematica 28, 167-206. https://doi.org/10.1006/hmat.2001.2317
  170. Robson, E. (2002). Words and pictures: New light on Plimpton 322. Amer. Math. Monthly 109, 105-120 https://doi.org/10.2307/2695324
  171. Robson, E. (2008). Mathematics in ancient Iraq. New Jersey: Princeton Univ. Press.
  172. Rosen, F(Edited and Translated). (1923). The algebra of Mohammed ben Musa. Lexington: ULAN Press.
  173. Rossi, C. (2003). Architecture and mathematics in ancient Egypt. Cambridge: Cambridge Univ. Press.
  174. Sontag, S. (2013). 해석에 반대한다(이민아 옮김). 서울: 이후.(Sontag, S. (1965). Against interpretation. New York: FSG.)
  175. Stephenson, F. and Fatoohi, L. (1997). Thales's prediction of a solar eclipse. J. for the History of Astronomy 28, 279-282. https://doi.org/10.1177/002182869702800401
  176. Stillwell, J. (2010). Mathematics and history, 3rd ed. New York: Springer.
  177. Struik, D(Edited). (1986). A source book in mathematics, 1200-1800. New Jersey: Princeton Univ. Press.
  178. Suzuki, J. (2002). A history of mathematics. New Jersey: Prentice Hall.
  179. Suzuki, J. (2009). Mathematics in historical context. Washington: MAA.
  180. Thomas, I(Translated). (1993). Greek mathematics II. Massachusetts: Harvard Univ. Press.
  181. Thomas, I(Translated). (2006). Greek mathematics I. Massachusetts: Harvard Univ. Press.
  182. Trachtenber, M. and Hyman, I. (2002). Architecture: From prehistory to post-modernism, 2nd ed. New Jersey: Prentice Hall.
  183. Van Brummelen, G. (2009). The mathematics of the heavens and the earth: The early history of trigonometry. New Jersey: Princeton Univ. Press.
  184. Van De Mieroop, M. (2011). A history of ancient Egypt. Chichester: Wiley-Blackwell.
  185. van der Waerden, B. L. (1985). A history of algebra. New York: Springer.
  186. Varadarajan, V. (1998). Algebra in ancient and modern times. Rhode Island: AMS.
  187. Veljan, D. (2000). The 2500-year-old Pythagorean theorem. Math. Mag. 73(4), 259-272. https://doi.org/10.2307/2690973
  188. Wells, D. (1997). The penguin dictionary of curious and interesting numbers, rev. ed. New York: Penguin Books.
  189. Whitman, E. (1943). Some historical notes on the cycloid. Amer. Math. Monthly 50(5), 309-315. https://doi.org/10.2307/2302830

Cited by

  1. 중등수학 교과서가 다루는 미적분 역사 서술의 비판과 대안 - 17세기까지의 미적분의 역사를 중심으로 - vol.31, pp.2, 2017, https://doi.org/10.7468/jksmee.2017.31.2.139
  2. Using Chosun Mathematics in Mathematics Education: Focusing on Similarity vol.21, pp.2, 2015, https://doi.org/10.24231/rici.2017.21.2.71
  3. 중국 고등학교 수학 교육과정 및 교과서의 수학사 내용 분석 vol.31, pp.5, 2015, https://doi.org/10.14477/jhm.2018.31.5.235