DOI QR코드

DOI QR Code

Behavior of underground strutted retaining structure under seismic condition

  • Chowdhury, Subha Sankar (Department of Civil Engineering, Indian Institute of Technology Kharagpur) ;
  • Deb, Kousik (Department of Civil Engineering, Indian Institute of Technology Kharagpur) ;
  • Sengupta, Aniruddha (Department of Civil Engineering, Indian Institute of Technology Kharagpur)
  • 투고 : 2014.08.12
  • 심사 : 2014.09.26
  • 발행 : 2015.05.25

초록

In this paper, the behavior of underground strutted retaining structure under seismic condition in non-liquefiable dry cohesionless soil is analyzed numerically. The numerical model is validated against the published results obtained from a study on embedded cantilever retaining wall under seismic condition. The validated model is used to investigate the difference between the static and seismic response of the structure in terms of four design parameters, e.g., support member or strut force, wall moment, lateral wall deflection and ground surface displacement. It is found that among the different design parameters, the one which is mostly affected by the earthquake force is wall deflection and the least affected is the strut force. To get the best possible results under seismic condition, the embedment depth of the wall and thickness of the wall can be chosen as around 100% and 6% of the depth of final excavation level, respectively. The stiffness of the strut may also be chosen as $5{\times}105kN/m/m$ to achieve best possible performance under seismic condition.

키워드

참고문헌

  1. Abuhajar, O., Naggar, H.E. and Newson, T. (2011), "Effects of underground structures on amplification of seismic motion for sand with varying density", Pan-Am CGS Geotechnical Conference, October 2-6, 2011, Toronto, Ontario, Canada.
  2. Atik, L.A. and Sitar, N. (2010), "Seismic earth pressures on cantilever retaining structures", J. Geotech. Geoenviron. Eng., 136(10), 1324-1333. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000351
  3. Aversa, S., Maiorano, R.M.S. and Tamagnini, C. (2007), "Influence of damping and soil model on the computed seismic response of flexible retaining structures", In 14th European Conference on Soil Mechanics and Geotechnical Engineering.
  4. Bose, S.K. and Som, N.N. (1998), "Parametric study of a braced cut by Finite Element method", Comput. Geotech., 22(2), 91-107. https://doi.org/10.1016/S0266-352X(97)00033-5
  5. Callisto, L., Soccodato, F.B. and Conti, R. (2008), "Analysis of the seismic behavior of propped retaining structures", Proceedings of Geotechnical Earthquake Engineering and Soil Dynamivs IV conference, GSP 181, Sacramento, USA.
  6. Callisto, L. and Soccodato, F.M. (2010), "Seismic design of flexible cantilever retaining walls", J. Geotech. Geoenviron. Eng., 136(2), 344-354. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000216
  7. Caltabiano, S., Cascone, E. and Maugeri, M. (2000), "Seismic stability of retaining walls with surcharge", Soil Dyn. Earthq. Eng., 20(8), 469-476. https://doi.org/10.1016/S0267-7261(00)00093-2
  8. Carrubba, P. and Colonna, P. (2000), "A comparison of numerical methods for multi-tied walls", Comput. Geotech., 27(2), 117-140. https://doi.org/10.1016/S0266-352X(00)00007-0
  9. Chowdhury, S.S., Deb, K. and Sengupta, A. (2013), "Estimation of design parameters for braced excavation: A numerical study", Int. J. Geomech., 13(3), 234-247. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000207
  10. Conti, R., Viggiani, G.M.B. and Madabhusi, S.P.G. (2010), Physical modeling of flexible retaining walls under seismic actions, Physical Modelling in Geotechnics, Eds. Springman, Laue and Seward, Taylor & Francis Group, London.
  11. Costa, P.A., Borges, J.L. and Fernandes, M.M. (2007), "Analysis of a braced excavation in soft soils considering the consolidation effect", J. Geotech. Geologic. Eng., 25(6), 617-629. https://doi.org/10.1007/s10706-007-9134-7
  12. Day, R.A. and Potts. D.M. (1993), "Modeling sheet pile retaining walls", Comput. Geotech., 15(3), 125-143. https://doi.org/10.1016/0266-352X(93)90009-V
  13. Gazetas, G., Psarropoulos, P.N., Anastasopoulos, I. and Gerolymos, N. (2004), "Seismic behavior of flexible retaining systems subjected to short-duration moderately strong excitation", Soil Dyn. Earthq. Eng., 24(7), 537-550. https://doi.org/10.1016/j.soildyn.2004.02.005
  14. Georgiadis, M. and Anagnostopoulos, C. (1999), "Displacement of structures adjacent to cantilever sheet pile walls", Soil. Found., 39(2), 99-104. https://doi.org/10.3208/sandf.39.2_99
  15. Finno, R.J., Harahap, I.S. and Sabatini, P.J.M. (1991), "Analysis of braced excavations with coupled finite element formulations", Comput. Geotech., 12(2), 91-114. https://doi.org/10.1016/0266-352X(91)90001-V
  16. Finno, R.J. and Harahap, I.S. (1991), "Finite Element Analysis of HDR-4 excavation", J. Geotech. Eng. Div., 117(10), 1590-1609. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:10(1590)
  17. His, J.P. and Small, J.C. (1993), "Application of a fully coupled method to the analysis of an excavation", Soil. Found., 33(4), 36-48. https://doi.org/10.3208/sandf1972.33.4_36
  18. Hsieh, P.G. and Ou, C.Y. (1998), "Shape of ground surface settlement profiles caused by excavation", Can. Geotech. J., 35(6), 1004-1117. https://doi.org/10.1139/t98-056
  19. Hsiung, B.C.B. (2009), "A case study on the behavior of a deep excavation in sand", Comput. Geotech., 36(4), 665-675. https://doi.org/10.1016/j.compgeo.2008.10.003
  20. Itasca (2005), FLAC Fast Lagrangian Analysis of Continua, v.5.0, User"s Manual.
  21. Jr. Richards, R., Huang, M. and Fishman, K.L. (1999), "Seismic earth pressure on retaining structures", J. Geotech. Geoenviron. Eng., 125(9), 771-778. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:9(771)
  22. Karlsrud, K. and Andresen, L. (2005), "Loads on braced excavation in soft clay", Int. J. Geomech., 5(2), 107-113. https://doi.org/10.1061/(ASCE)1532-3641(2005)5:2(107)
  23. Kung, G.T.C., Juang, C.H., Hsiao, E.C.L. and Hashash, Y.M.A. (2007), "Simplified model for wall deflection and ground-surface settlement caused by braced excavation in clays", J. Geotech. Geoenviron. Eng., 133(6), 731-747. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:6(731)
  24. Kung, G.T.C. (2009), "Comparison of excavation-induced wall deflection using top-down and bottom-up construction methods in Taipei silty clay", Comput. Geotech., 36(3), 373-385. https://doi.org/10.1016/j.compgeo.2008.07.001
  25. Ling, H.I., Mohri, Y., Leshchinsky, D., Burke, C., Matsushima, K. and Liu, H. (2005), "Large scale shaking table tests on modular block-reinforced soil retaining walls", J. Geotech. Geoenviron. Eng., 131(4), 465-476. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:4(465)
  26. Ling, H.I., Liu, H. and Mohri, Y. (2005), "Parametric studies on the behavior of reinforced soil retaining walls under earthquake loading", J. Eng. Mech., 131(10), 1056-1065. https://doi.org/10.1061/(ASCE)0733-9399(2005)131:10(1056)
  27. Ling, H.I., Leshchinsky, D., Wang, J.P., Mohri, Y. and Rosen, A. (2009), "Seismic response of geocell retaining walls: Experimental studies", J. Geotech. Geoenviron. Eng., 135(4), 515-524. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:4(515)
  28. Liu, G.B., Ng, C.W.W. and Wang, Z.W. (2005), "Observed performance of a deep multi-strutted excavation in Shanghai soft clays", J. Geotech. Geoenviron. Eng., 131(8), 1004-1013. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:8(1004)
  29. Long, M. (2001), "Database for retaining wall and ground movements due to deep excavations", J. Geotech. Geoenviron. Eng., 127(3), 203-224. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:3(203)
  30. Lysmer, J. and Kuhlemeyer, R.L. (1969), "Finite dynamic model for infinite media", J. Eng. Mech., 95(EM4), 859-877.
  31. Madabhushi, S.P.G. and Zeng, X. (1998), "Seismic response of gravity quay walls. I: Numerical modeling", J. Geotech. Geoenviron. Eng., 124(5), 418-427. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:5(418)
  32. Madabhushi, S.P.G. and Zeng, X. (2008), "Simulating seismic response of cantilever retaining walls", J. Geotech. Geoenviron. Eng., 133(5), 539-549. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:5(539)
  33. Moormann, C. (2004), "Analysis of wall and ground movements due to deep excavations in soft soil based on a new worldwide database", Soils Found., 44(1), 87-98. https://doi.org/10.3208/sandf.44.87
  34. Nakai, T., Kawano, H., Murata, K., Banno, M. and Hashimoto, T. (1999), "Model test and numerical simulation of braced excavation in sandy ground: Influences of construction history, wall friction, wall stiffness, strut position and strut stiffness", Soils Found., 39(3), 1-12. https://doi.org/10.3208/sandf.39.3_1
  35. Neelakantan, G., Budhu, M. and Jr. Richards, R. (1992), "Balanced seismic design of anchored retaining walls", J. Geotech. Eng. Div., 118(6), 873-888. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:6(873)
  36. Ng, C.W.W., Simpson, B., Lings, M.L. and Nash, D.F.T. (1998), "Numerical analysis of a multipropped retaining wall in stiff clay", Can. Geotech. J., 35(1), 115-130. https://doi.org/10.1139/t97-074
  37. Ou, C.Y. and Hsieh, P.G. (2011), "A simplified method for predicting ground settlement profiles induced by excavation in soft clay", Comput. Geotech., 38(8), 987-997. https://doi.org/10.1016/j.compgeo.2011.06.008
  38. Psarropoulos, P.N., Klonaris, G. and Gazetas, G. (2005), "Seismic earth pressures on rigid and flexible retaining walls", Soil Dyn. Earthq. Eng., 25(10), 795-809. https://doi.org/10.1016/j.soildyn.2004.11.020
  39. Siller, T.J. and Frawley, D.D. (1992), "Seismic response of multianchored retaining walls", J. Geotech. Geoenviron. Eng., 118(11), 1787-1803. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:11(1787)
  40. Takemura, J., Kondoh, M., Esaki, T., Kouda, M. and Kusakabe, O. (1999), "Centrifuge model tests on double propped wall excavation in soft clay", Soil. Found., 39(3), 75-87. https://doi.org/10.3208/sandf.39.3_75
  41. Tanaka, H. (1999), "Behavior of a braced excavation in soft clay and the undrained shear strength for passive earth pressure", Soils Found., 34(1), 53-64. https://doi.org/10.3208/sandf1972.34.53
  42. Tefera, T.H., Nordal, S., Grande, L., Sandven, R. and Emdal, A. (2006), "Ground settlement and wall deformation from a large scale model test on as single strutted sheet pile wall in sand", Int. J. Physic. Model. Geotech., 6(2), 1-13.
  43. Tufenkjian, M.R. and Vucetic, M. (2000), "Dynamic failure mechanism of soil-nailed excavation models in centrifuge", J. Geotech. Geoenviron. Eng., 126(3), 227-235. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:3(227)
  44. Wang, Z.W., Ng, C.W.W. and Liu, G.B. (2005), "Characteristics of wall deflections and ground surface settlements in Shanghai", Can. Geotech. J., 42(5), 1243-1254. https://doi.org/10.1139/t05-056
  45. Wang, J.H., Xu, Z.H. and Wang, W.D. (2010), "Wall and ground movements due to deep excavations in Shanghai soft soils", J. Geotech. Geoenviron. Eng., 136(7), 985-994. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000299
  46. Wartman, J., Rondinel-Oviedo, E.A. and Rodriguez-Marek, A. (2006), "Performance and analyses of Mechanically Stabilized earth walls in the Tecoman, Mexico Earthquake", J. Perform. Constr. Fac., 20(3), 287-299. https://doi.org/10.1061/(ASCE)0887-3828(2006)20:3(287)
  47. Watanabe, K., Munaf, Y., Koseki, J., Tateyama, M. and Kojima, K. (2003), "Behaviors of several types of model retaining walls subjected to irregular excitation", Soils Found., 43(5), 13-27. https://doi.org/10.3208/sandf.43.5_13
  48. Yogendrakumar, M. Bathurst, R.J. and Finn, W.D.L. (1992), "Dynamic response analysis of reinforced soil retaining wall", J. Geotech. Geoenviron. Eng., 118(8), 1158-1167. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:8(1158)
  49. Yoo, C. and Lee, D. (2008), "Deep excavation-induced ground surface movement characteristics-A numerical investigation", Comput. Geotech., 35(2), 231-252. https://doi.org/10.1016/j.compgeo.2007.05.002
  50. Zdravkovic, L. Potts, D.M. and St. John, H.D. (2005), "Modeling of a 3D excavation in finite element analysis", Geotechnique, 55(7), 497-513. https://doi.org/10.1680/geot.2005.55.7.497
  51. Zeng, X. (1998), "Seismic response of gravity quay walls. I: Centrifuge modeling", J. Geotech. Geoenviron. Eng., 124(5), 406-417. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:5(406)

피인용 문헌

  1. Effect of Excavation Depths on Ground Surface Settlement for Embedded Cantilever Retaining Structure due to Seismic Loading vol.199, 2017, https://doi.org/10.1016/j.proeng.2017.09.217
  2. Analysis of Stress Characteristics and the Engineering Application of the Self-Balancing Retaining Wall vol.2017, 2017, https://doi.org/10.1155/2017/2463735
  3. Behavior of braced excavation in sand under a seismic condition: experimental and numerical studies vol.17, pp.2, 2018, https://doi.org/10.1007/s11803-018-0443-z
  4. A framework for modelling mechanical behavior of surrounding rocks of underground openings under seismic load vol.13, pp.6, 2017, https://doi.org/10.12989/eas.2017.13.6.519
  5. Development of correlation between SPT-N value and shear wave velocity and estimation of non-linear seismic site effects for soft deposits in Kolkata city vol.16, pp.1, 2015, https://doi.org/10.1080/17486025.2019.1640898