DOI QR코드

DOI QR Code

Movie Rating Inference by Construction of Movie Sentiment Sentence using Movie comments and ratings

영화평과 평점을 이용한 감성 문장 구축을 통한 영화 평점 추론

  • Oh, Yean-Ju (Dept. of Computer Engineering, Korea Aerospace University) ;
  • Chae, Soo-Hoan (Dept. of Computer Engineering, Korea Aerospace University)
  • Received : 2015.01.26
  • Accepted : 2015.04.06
  • Published : 2015.04.30

Abstract

On movie review sites, movie ratings are determined by netizens' subjective judgement. This means that inconsistency between ratings and opinions from netizens often occurs. To solve this problem, this paper proposes sentiment sentence sets which affect movie evaluation, and apply sets to comments to infer ratings. Creation of sentiment sentence sets is consisted of two stages, construction of sentiment word dictionary and creation of sentiment sentences for sentiment estimation. Sentiment word dictionary contains sentimental words and its polarities included in reviews. Elements of sentiment sentences are combined with movie related noun and predicate from words sentiment word dictionary. In this study, to make correspondence between polarity of sentiment sentence and sentiment word dictionary, sentiment sentences which have different polarity with sentiment word dictionary are removed. The scores of comments are calculated by applying averages of sentiment sentences elements. The result of experiment shows that sentence scores from sentiment sentence sets are closer to reflect real opinion of comments than ratings by netizens'.

영화 리뷰 사이트에서 영화 평점은 네티즌들의 주관적 판단으로 결정된다. 이로 인해 그들이 남긴 영화평과 평점 사이의 극성이 서로 불일치하는 경우가 종종 발생한다. 본 논문에서는 이 문제를 해결하기 위해 영화의 평가에 영향을 미치는 감성 문장들의 집합을 만들고, 이들을 영화평에 적용하여 평점을 추론한다. 감성 문장들의 집합을 만들기 위한 과정은 감성 어휘 사전을 구축하는 단계와 감성 문장을 구성하는 단계로 이루어진다. 감성 어휘 사전은 영화평에서 쓰인 형용사와 형용사의 극성을 저장한다. 감성 문장은 영화와 관련된 명사를 주어로 갖고 감성 어휘 사전의 어휘를 서술어로 갖는 문장 구조이다. 감성 문장의 극성과 감성 문장에서 쓰인 서술어의 극성이 다른 문장들은 제거하여 감성 문장들이 감성 어휘 사전 어휘의 극성과 일치되도록 하였다. 영화평에서 쓰인 감성 문장들의 평균 점수를 구하면 영화평이 갖는 감성 점수가 된다. 본 연구 결과를 통해 네티즌들이 매긴 평점에 비해 감성 문장 집합을 적용하여 계산한 영화평의 감성 점수가 영화평에 대한 의견을 더 잘 반영한다는 것을 알 수 있다.

Keywords

References

  1. B. Pang and L. Lee, "Opinion Mining and Sentiment Analysis" Foundations and Trends in Information Retrieval, Vol. 2, No. 1-2, pp. 1-135, January 2008. http://dx.doi.org/10.1561/1500000011
  2. A. Esuli and F. Sebastiani, "Sentiwordnet: A publicly available lexical resource for opinion mining" In In Proceedings of the 5th Conference on Language Resources and Evaluation (LRECO06), pp. 417-422, 2006. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.61.7217
  3. V. Hatzivassiloglou and J. Janyce M, Wiebe "Effects of adjective orientation and gradability on sentence subjectivity" COLING '00 Proceedings of the 18th conference on Computational linguistics, Vol. 1, pp. 299-305, 2000. http://dx.doi.org/10.3115/990820.990864
  4. J. Wiebe and E. Riloff "Creating Subjective and Objective Sentence Classifiers from Unannotated Texts" 6th International Conference, CICLing 2005, Vol. 3406, pp. 486-497, February 13-19 2005. http://link.springer.com/chapter/10.1007%2F978-3-540-30586-6_53 https://doi.org/10.1007%2F978-3-540-30586-6_53
  5. Peter D. Turney "Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews" ACL '02 Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, pp. 417-424, 2002. http://dx.doi.org/10.3115/1073083.1073153
  6. Sang-il Song, Dongjoo Lee, Sang-goo Lee, "Identifying Sentiment Polarity of Korean Vocabulary Using PMI" KCC 2010, Vol.37, No.1, pp. 260-265, 2010.6. http://www.dbpia.co.kr/Article/1308678
  7. Jongseok Song, Soowon Lee, "Automatic Construction of Positive/Negative Feature-Predicate Dictionary for Polarity Classification of Product Reviews" Journal of KIISE:Software and Applications, Vol.38, No.3, pp. 157-168, 2011.3. http://www.dbpia.co.kr/Article/1455474
  8. Jaeseok Myung, Dongjoo Lee, Sang-goo Lee "A Korean Product Review Analysis System Using a Semi-Automatically Constructed Semantic Dictionary" Journal of KIISE:Software and Applications, Vol.35, No.6, pp. 392-403, 2008.6. http://www.dbpia.co.kr/Article/838396
  9. Eunji Yu, Yoosin Kim, Namgyu Kim, SeungRyul Jeong "Predicting the Direction of the Stock Index by Using a Domain-Specific Sentiment Dictionary" Journal of Intelligence and Information Systems, Vol.19, No.1, pp. 95-110, 2013. http://www.dbpia.co.kr/Article/3138319 https://doi.org/10.13088/jiis.2013.19.1.095
  10. Dumim Yoon, KyungJoong Kim "Prediction of Rating Score from Short Comments on Movies using Word-Rating Correlation Analysis" HCI2011, pp. 484-486, 2011.1. http://www.dbpia.co.kr/Article/2548496
  11. Sung-Ho Oh, Shin-Jae Kang "Movie Retrieval System by Analyzing Sentimental Keyword from User's Movie Reviews" Journal of the Korea Academia-Industrial cooperation Society, Vol.14, No.3, pp. 1422-1427, 2013. http://dx.doi.org/10.5762/KAIS.2013.14.3.1422
  12. Jung-Hwa Lee, Ki-Young Lee "The Reliability Measure of Movie Review Ratings" Proceedings of the IEEK Conference, pp. 715-717, 2012.6. http://www.dbpia.co.kr/Article/3280417
  13. KyongMin Kim, MuHyok Ahn, Younho Lee "Detection of Malicious Rate Evaluation and Prediction of True Rate in Movie Rating" 정, Journal of the Korean Institute of Information Scientists and Engineers: Computing Practices and Letters, Vol.20, No.4, pp. 213-218, 2014.4. http://www.dbpia.co.kr/Article/3437599
  14. Jee Sun Nam "Study on Linguistic Patterns of Online Reviews on Movie for the Automatic Classification of Human Opinion" The Linguistic Society of Korea, Vol.58, pp. 75-103, 2010.12. http://www.dbpia.co.kr/Article/3278672

Cited by

  1. A Study on Analyzing Sentiments on Movie Reviews by Multi-Level Sentiment Classifier vol.22, pp.3, 2016, https://doi.org/10.13088/jiis.2016.22.3.071
  2. Movie Popularity Classification Based on Support Vector Machine Combined with Social Network Analysis vol.16, pp.3, 2017, https://doi.org/10.9716/kits.2017.16.3.167
  3. 의미연결망 분석을 활용한 영화 리뷰 시각화 vol.23, pp.1, 2015, https://doi.org/10.6109/jkiice.2019.23.1.1
  4. 「겨울왕국2」의 콜라보레이션 패션제품에 대한 소비자 리뷰 - 의미 네트워크와 감성분석 - vol.28, pp.2, 2020, https://doi.org/10.29049/rjcc.2020.28.2.265
  5. Fashion informatics of the Big 4 Fashion Weeks using topic modeling and sentiment analysis vol.8, pp.1, 2015, https://doi.org/10.1186/s40691-021-00265-6