DOI QR코드

DOI QR Code

Wireless Channel Selection Considering Network Characteristics in Cluster-based Sensor Networks

클러스터 기반 센서 네트워크에서의 네트워크 특성 정보를 고려한 무선 채널 선택 기법

  • Received : 2014.10.27
  • Accepted : 2015.04.17
  • Published : 2015.04.30

Abstract

To provide scalability, wireless sensor network has cluster-based architecture. Wireless sensor network can be implemented based on the IEEE 802.15.4 which is exploited in 2.4GHz ISM frequency band. Since this frequency band is used for various data communication, network status of wireless sensor networks frequently changes according to wireless environment. Thus, wireless channel selection to avoid reduction of transmission efficiency is required. This paper estimates network status using the information that a cluster-head collects in a cluster. Through objective function with throughput, RSSI level and reliability as input parameters, this paper proposes proper wireless channel selection. Simulation results show that the proposed method maintains transmission efficiency even though network status changes.

무선 센서 네트워크의 구현에 활용되는 IEEE 802.15.4 표준은 이기종 통신 기술들이 공존하는 2.4 GHz ISM 대역을 기반으로 동작하며, 수시로 변하는 네트워크 상태로 인한 간섭을 회피한 전송 효율의 향상과 네트워크의 상태를 고려한 채널 선택 기술이 요구된다. 무선 센서 네트워크는 다수의 센서 노드로 구성되어 있으며, 확장성을 위해 클러스터 기반의 네트워크 구조를 가지며, 싱크 노드는 각 클러스터들의 네트워크 특성정보를 수집하고 주기적 쿼리 메시지 발송을 통해 이 정보들을 네트워크 필드 내 클러스터 헤드들과 공유한다. 본 논문에서는 클러스터 헤드가 수집한 네트워크 정보를 기반으로 클러스터 내에서의 네트워크 상태를 파악하고, 계량화된 처리량 (throughput) 레벨, 수신신호강도 (RSSI) 레벨, 그리고 신뢰성 (reliability)을 파라미터로 하는 목적함수를 통해 적절한 무선채널을 클러스터에서 선택하는 방안을 제안한다. 제안된 방안이 네트워크 상태 변화에서도 데이터 전송 효율을 유지할 수 있음을 컴퓨터 시뮬레이션을 통해 검증하였다.

Keywords

References

  1. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam and E. Cayirci, "A Survery on Sensor Networks," IEEE Communications Magazine, Vol.40, No.8, pp.102-114, August 2002. http://dx.doi.org/10.1109/MCOM.2002.1024422
  2. D. culler, D. Estrin, and M. Srivastava, "Guest editors' introduction: Overview of sensor networks," IEEE Computer, Vol.37, No.8, pp.41-49, August 2004. http://dx.doi.org/10.1109/MC.2004.93
  3. H. Karl, Protocols and Architectures for Wireless Sensor Networks, John Wiley & Sons, 2005.
  4. IEEE 802.15.4 Standard-2006, "Part 15.4: Wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (LR-WPANs)," 2006. http://dx.doi.org/10.1109/IEEESTD.2006.232110
  5. IEEE 802.11 Standard-2012, "Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications," 2012. http://dx.doi.org/10.1109/IEEESTD.2012.6361248
  6. S. Pollom, I. Tan, B. Hodge, C. Chun, and A. Bahai, "Harmful coexistence between 802.15.4 and 802.11: A measurement-based study," In Proc.3rd CrownCom, pp. 1-6, May 2008. http://dx.doi.org/10.1109/CROWNCOM.2008.4562460
  7. C. M. Liang, N. B. Priyantha, J. Liu, and A. Terzis, "Surveying WiFi interference in low power ZigBee networks," In Proc. SenSys, Zurich, Switzerland, pp. 309-322. Nov. 2010. http://dx.doi.org/10.1145/1869983.1870014
  8. L. Angrisani, M. Bertocco, D. Fortin and A. Sona, "Experimental study of coexistence issues between IEEE 802.11b and IEEE 802.15.4 wireless networks," IEEE Transactions on Instrumentation and Measurement, 57(8), 1514-1523, 2008. http://dx.doi.org/10.1109/TIM.2008.925346
  9. I Howitt and A. Shukla, "Coexistence empirical study and analytical model for low-rate WPAN and IEEE 802.11b," In Proc. IEEE WCNC'08, pp. 900-905, March 2008. http://dx.doi.org/10.1109/WCNC.2008.164
  10. Y. Jeong, J. Kim and S.-J. Han, "Interference mitigation in wireless sensor networks using dual heterogeneous radios," Wireless Networks, Vol.17, No.7, pp.1699-1713, October 2011. http://dx.doi.org/10.1007/s11276-011-0373-4
  11. R. Soua and R Minet, "A survey on multichannel assignment protocols in wireless sensor networks," Wireless Days, 2011. http://dx.doi.org/10.1109/WD.2011.6098201
  12. L. Tang, Y. Sun, O. Gurewitz and D. B. Johnson, "EM-MAC: A dynamic multichannel energy-efficient MAC protocol for wireless sensor networks," in Proc. ACM MobiHoc 2011. http://dx.doi.org/10.1145/2107502.2107533
  13. G. Zhou, C. Huang, T. Yan, T. He and J. A. Stankovic, "MMSN: Multi-frequency media access control for wireless sensor networks," in Proc. IEEE INFOCOM 2006. http://dx.doi.org/10.1109/INFOCOM.2006.250
  14. Y. Wu, M. Keally, G. Zhou and W. Mao, "Traffic-aware channel assignment in wireless sensor networks," Lecture Notes in Computer Science (LNCS), Vol.5682, 2009. http://dx.doi.org/10.1007/978-3-642-03417-6_47
  15. J. Li, D. Zhang, L. Guo, S. Ji, Y. Li, "ARM: An asynchronous receiver-initiated multichannel MAC protocol with duty cycling for WSNs," In Proc. IEEE IPCCC 2010. http://dx.doi.org/10.1109/PCCC.2010.5682325
  16. N. Abdeddaim, F. Theoleyre, F. Rousseau and A. Duda, "Multi-Channel Cluster Tree for 802.15.4 Wireless Sensor Network," in Proc. IEEE PIMRC 2012. http://dx.doi.org/10.1109/PIMRC.2012.6362853
  17. S. M. Ross, "Probability Models for Computer Science," Harcourt/Academic Press, 2001.
  18. M. H. MacDougall, "Simulating Computer Systems, Techniques and Tool," MIT Press, 1987.