DOI QR코드

DOI QR Code

Composite Ni-TiO2 nanotube arrays electrode for photo-assisted electrolysis

  • 투고 : 2014.08.06
  • 심사 : 2015.04.29
  • 발행 : 2015.05.25

초록

This article is addressed to define a new composite electrode constituted by porous nickel and an array of highly ordered $TiO_2$ nanotubes obtained by a previous galvanostatic anodization treatment in an ethylene glycol solution. The electrochemical performances of the composite anode were evaluated in a photo-electrolyser, which showed good solar conversion efficiency with respect to the UV irradiance together with a reduction of energy consumption. Such a combination of materials makes our system simple and able to work both in dark and under solar light exposure, thus opening new perspectives for industrial-scale applications.

키워드

참고문헌

  1. Alivov, Y. and Fan, Z.Y. (2010), "Dye-sensitized solar cells using $TiO_{2}$ nanoparticles transformed from nanotube arrays", J. Mater. Sci., 45, 2902-2906. https://doi.org/10.1007/s10853-010-4281-2
  2. Burgeth, G. and Kisch, H. (2002), "Photocatalytic and photoelectrochemical properties of titaniachloroplatinate (IV)", Coord. Chem. Rev., 230, 41-47. https://doi.org/10.1016/S0010-8545(02)00095-4
  3. Cai, Q., Paulose, M., Varghese, O.K. and Grimes, C.A. (2005), "The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation", J. Mater. Res., 20(1), 230-236. https://doi.org/10.1557/JMR.2005.0020
  4. Chen, Q., Xu, D., Wu, Z. and Liu, Z. (2008), "Free-standing $TiO_{2}$ nanotube arrays made by anodic oxidation and ultrasonic splitting", Nanotechnology, 19, 365708. https://doi.org/10.1088/0957-4484/19/36/365708
  5. Das, K., Bandyopadhyay, A. and Bose, S. (2008), "Biocompatibility and in situ growth of $TiO_{2}$ nanotubes on Ti using different electrolyte chemistry", J. Am. Ceram. Soc., 91(9), 2808-2814. https://doi.org/10.1111/j.1551-2916.2008.02545.x
  6. Dinca, M., Surendranath, Y. and Nocera, D.G. (2010), "Nickel-borate oxygen-evolving catalyst that functions under benign conditions", PNAS, 107(23), 10337-10341. https://doi.org/10.1073/pnas.1001859107
  7. Dong, L., Ma, Y., Wang, Y., Tian, Y., Ye, G. and Jia, X. (2009), "Preparation and characterization of nitrogen-doped titania nanotubes", Mater. Lett., 63(18-19), 1598-1600. https://doi.org/10.1016/j.matlet.2009.04.022
  8. Dupuis, G. and Menu, M. (2006), "Quantitative characterization of pigment mixtures used in art by fibre-optics diffuse-reflectance spectroscopy", Appl. Phys. A, Mater. Sci. Proc., 83, 469. https://doi.org/10.1007/s00339-006-3522-3
  9. Fang, D., Liu, S.Q., Chen, R.Y., Huang, K.L., Li, J.S., Yu, C., Qin, D.Y. and Xuebao, W.C. (2008), "Fabrication and characterization of highly ordered porous anodic titania on titanium substrate", J. Inorg. Mater., 23(4), 647-651. https://doi.org/10.3724/SP.J.1077.2008.00647
  10. Fujishima, A.K. and Honda, K. (1972), "Electrochemical photolysis of water at a semiconductor electrode", Nature, 238, 37-38 https://doi.org/10.1038/238037a0
  11. Ghicov, A., Macak, J.M., Tsuchiya, H., Kunze, J., Haeublein, V., Frey, L. and Schmuki, P. (2006a), "Ion implantation and annealing for an efficient N-doping of $TiO_{2}$ nanotubes", Nano Lett., 6(5), 1080-1082. https://doi.org/10.1021/nl0600979
  12. Ghicov, A., Macak, J.M., Tsuchiya, H., Kunze, J., Haeublein, V., Kleber, S. and Schmuki, P. (2006b), "$TiO_{2}$ nanotube layers: dose effects during nitrogen doping by ion implantation", Chem. Phys. Lett., 419, 426-429. https://doi.org/10.1016/j.cplett.2005.11.102
  13. Gong, A., Grimes, C.A., Varghese, O.K., Hu, W., Singh, R.S., Chen, Z. and Dickey, E.C. (2001), "Titanium oxide nanotube arrays prepared by anodic oxidation", J. Mater. Res., 16, 3331-3334 https://doi.org/10.1557/JMR.2001.0457
  14. Grimes, C.A., Varghese, O.K. and Ranjan, S. (2008), The Solar Hydrogen Generation by Water Photoelectrolysis, Springer, New York, NY, USA.
  15. Hahn, R., Ghicov, A., Salonen, J., Lehto, V.P. and Schmuki, P. (2007), "Carbon doping of self-organized $TiO_{2}$ nanotube layers by thermal acetylene treatment", Nanotechnology, 18, 105604. https://doi.org/10.1088/0957-4484/18/10/105604
  16. Kamat, P., Flumiani, M. and Dawson, A. (2002), "Metal-metal and metal-semiconductor composite nanoclusters", Coll. Surf. A: Physicochem. Eng. Aspec., 202, 269-279. https://doi.org/10.1016/S0927-7757(01)01071-8
  17. Khaselev, O., Bansal, A. and Turner, J.A. (2001), "High-efficiency integrated multijunction photovoltaic/ electrolysis systems for hydrogen production", Int. J. Hydro. Energy, 26, 127-32. https://doi.org/10.1016/S0360-3199(00)00039-2
  18. Kelly, N.A. and Gibson, T.L. (2006), "Design and characterization of a robust photoelectrochemical device to generate hydrogen using solarwater splitting", Int. J. Hydro. Energy, 31, 1658-1673. https://doi.org/10.1016/j.ijhydene.2005.12.014
  19. Kontos, A.G., Kontos, A.I., Tsoulkleris, D.S., Likodimos, V., Kunze, J., Schmuki, P. and Falaras, P. (2009) "Photo-induced effects on self-organized $TiO_{2}$ nanotube arrays: the influence of surface morphology", Nanotechnology, 20(4), 045603. https://doi.org/10.1088/0957-4484/20/4/045603
  20. Li, Q. and Shang, J.K. (2009), "Self-organized nitrogen and fluorine Co-doped titanium oxide nanotube arrays with enhanced visible light photocatalytic performance", Environ. Sci. Tech., 43(23), 8923-8929. https://doi.org/10.1021/es902214s
  21. Lin, H., Huang, C.P., Li, W., Ni, C., Ismat, S. and Tseng, Y. (2006), "Size dependency of nanocrystalline $TiO_{2}$ on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol", Appl. Catal. B: Environ., 68, 1-11. https://doi.org/10.1016/j.apcatb.2006.07.018
  22. Linsebigler, A.L., Lu, G. and Yates, J.T. (1995), "Photocatalysis on $TiO_{2}$ surfaces: principles, mechanisms, and selected results", Chem. Rev., 95, 735-758. https://doi.org/10.1021/cr00035a013
  23. Liu, Z. and Misra, M. (2010), "Bifacial dye-sensitized solar cells based on vertically oriented $TiO_{2}$ nanotube arrays", Nanotechnology, 21, 125703(1-4). https://doi.org/10.1088/0957-4484/21/12/125703
  24. Lu, N., Zhao, H., Li, J., Quan, X. and Chen, S. (2008), "Characterization of boron-doped $TiO_{2}$ nanotube arrays prepared by electrochemical method and its visible light activity", Separat. Purific. Tech., 62, 668-673. https://doi.org/10.1016/j.seppur.2008.03.021
  25. Mohapatra, S.K., Misra, M., Mahajan, V.K. and Raja, K.S. (2007), "Design of a highly efficient photoelectrolytic cell for hydrogen generation by water splitting: application of $TiO_{2}$-xCx nanotubes as a photoanode and Pt/$TiO_{2}$ nanotubes as a cathode", J. Phys. Chem. C, 111(24), 8677-8685. https://doi.org/10.1021/jp071906v
  26. Mor, G.K., Varghese, O.K., Paulose, M., Mukherjee, N. and Grimes, C.A. (2003), "Fabrication of tapered, conical-shaped titania nanotubes", J. Mater. Res., 18(11), 2588-2593. https://doi.org/10.1557/JMR.2003.0362
  27. Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K. and Grimes, C.A. (2005a), "Enhanced photocleavage of water using titania nanotube arrays", Nano Lett., 5(1), 191-195. https://doi.org/10.1021/nl048301k
  28. Mor, G.K., Varghese, O.K., Paulose, M. and Grimes, C.A. (2005b), "Transparent highly ordered $TiO_{2}$ nanotube arrays via anodization of titanium thin films", Adv. Funct. Mater., 15, 1291-1296. https://doi.org/10.1002/adfm.200500096
  29. Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K. and Grimes, C.A. (2007), "High efficiency double heterojunction polymer photovoltaic cells using highly ordered $TiO_{2}$ nanotube arrays", Appl. Phys. Lett., 91, 152111. https://doi.org/10.1063/1.2799257
  30. Mor, G.K., Basham, J., Paulose, M., Kim, S., Varghese, O.K., Vaish, A., Yoriya, S. and Grimes, C.A. (2010), "High-efficiency forster resonance energy transfer in solid-state dye sensitized solar cells", Nano Lett., 10(7), 2387-2394. https://doi.org/10.1021/nl100415q
  31. Mura, F., Pozio, A., Masci, A. and Pasquali, M. (2009), "Effect of a galvanostatic treatment on the preparation of highly ordered $TiO_{2}$ nanotubes" Electrochim. Acta, 54, 3794-3798. https://doi.org/10.1016/j.electacta.2009.01.073
  32. Mura, F., Masci, A., Pasquali, M. and Pozio, A. (2010), "Stable $TiO_{2}$ nanotube arrays with high UV photoconversion efficiency", Electrochimica Acta, 55, 2246-2251. https://doi.org/10.1016/j.electacta.2009.11.060
  33. Oh, S.H., Finones, R.R., Daraio, C., Chen, L.H. and Jin, S. (2005), "Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes", Biomater., 26(24), 4938-4943. https://doi.org/10.1016/j.biomaterials.2005.01.048
  34. Oh, S.H. and Jin, S. (2006) "Titanium oxide nanotubes with controlled morphology for enhanced bone growth", Mater. Sci. Eng. C, 26, 1301-1306. https://doi.org/10.1016/j.msec.2005.08.014
  35. Oh, H.J., Lee, J.H., Kim, Y.J., Suh, S.J., Lee, J.H. and Chi, C.S. (2008), "Surface characteristics of porous anodic $TiO_{2}$ layer for biomedical applications", Mater. Chem. Phys., 109, 10-14. https://doi.org/10.1016/j.matchemphys.2007.11.022
  36. Park, J.H., Kim, S. and Bard, A.J. (2006), "Novel carbon-doped $TiO_{2}$ nanotube arrays with high aspect ratios for efficient solar water splitting", Nano Lett., 6(1), 24-28. https://doi.org/10.1021/nl051807y
  37. Peng, L., Mendelsohn, A.D., LaTempa, T.J., Yoriya, S., Grimes, C.A. and Desai, T.A. (2009), "Long-term small molecule and protein elution from $TiO_{2}$ nanotubes", Nano Lett., 9(5), 1932-1936. https://doi.org/10.1021/nl9001052
  38. Popat, K.C., Eltgroth, M., LaTempa, T.J., Grimes, C.A. and Desai, T.A. (2007a), "Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes", Biomater., 28(32), 4880-4888. https://doi.org/10.1016/j.biomaterials.2007.07.037
  39. Popat, K.C., Eltgroth, M., LaTempa, T.J., Grimes, C.A. and Desai, T.A. (2007b), "Titania nanotubes: a novel platform for drug-eluting coatings for medical implants?", Small, 3(11), 1878-1881. https://doi.org/10.1002/smll.200700412
  40. Pozio, A (2014), "Effect of low cobalt loading on $TiO_{2}$ nanotube arrays for water-splitting", Int. J. Electrochem., 2014, 1-7.
  41. Pozio, A. (2015), "Effect of tantalum doping on $TiO_{2}$ nanotube arrays for water-splitting", Modern Res. Catal., 4, 1-12. https://doi.org/10.4236/mrc.2015.41001
  42. Raja, K.S., Misra, M., Mahajan, V.K., Gandhi, T., Pillai, P. and Mohapatra, S.K. (2006), "Photo-electrochemical hydrogen generation using band-gap modified nanotubular titanium oxide in solar light", J. Power Sour., 161(2), 1450-1457. https://doi.org/10.1016/j.jpowsour.2006.06.044
  43. Sakthivel, S. and Kisch, H. (2003), "Daylight photocatalysis by carbon-modified titanium dioxide", Angew. Chem. Int. Ed., 42, 4908-4911. https://doi.org/10.1002/anie.200351577
  44. Sennik, E., Colak, Z., Kilinc, N. and Ozturk, Z.Z. (2010), "Synthesis of highly-ordered $TiO_{2}$ nanotubes for a hydrogen sensor", Int. J. Hydro. Energy, 35(9), 4420-4427. https://doi.org/10.1016/j.ijhydene.2010.01.100
  45. Shankar, K., Tep, K.C., Mor, G.K. and Grimes, C.A. (2006), "An electrochemical strategy to incorporate nitrogen in nanostructured $TiO_{2}$ thin films: modification of bandgap and photoelectrochemical properties", J. Phys. D, Appl. Phys., 39, 2361-2366. https://doi.org/10.1088/0022-3727/39/11/008
  46. Shankar, K., Mor, G.K., Prakasam, H.E., Yoriya, S., Paulose, M., Varghese, O.K. and Grimes, C.A. (2007), "Highly-ordered $TiO_{2}$ nanotube arrays up to 220 ${\mu}m$ in length: use in water photoelectrolysis and dye-sensitized solar cells", Nanotech., 18, 065707. https://doi.org/10.1088/0957-4484/18/6/065707
  47. Shrestha, N.K., Yang, M., Nah, Y.C., Paramasivam, I. and Schmuki, P. (2010), "Self-organized $TiO_{2}$ nanotubes: visible light activation by Ni oxide nanoparticle decoration", Electrochem. Commun., 12, 254-257. https://doi.org/10.1016/j.elecom.2009.12.007
  48. Simmons, E.L. (1975), "Diffuse reflectance spectroscopy: a comparison of the theories", Appl. Opt., 14, 1380-1386. https://doi.org/10.1364/AO.14.001380
  49. Su, Y., Han, S., Zhang, X., Chen, X. and Lei, L. (2008) "Preparation and visible-light-driven photoelectrocatalytic properties of boron-doped $TiO_{2}$ nanotubes", Mater. Chem. Phys., 110(2/3), 239-246. https://doi.org/10.1016/j.matchemphys.2008.01.036
  50. Surendranath, Y., Kanan, M.W. and Nocera, D.G. (2010), "Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH", J. Am. Chem. Soc., 132, 16501-16509. https://doi.org/10.1021/ja106102b
  51. Varghese, O.K., Gong, D., Paulose, M., Ong, K.G., Dickey, E.C. and Grimes, C.A. (2003a), "Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure", Adv. Mater., 15(7-8), 624-627. https://doi.org/10.1002/adma.200304586
  52. Varghese, O.K., Gong, D., Paulose, M., Ong, K.G. and Grimes, C.A. (2003b), "Hydrogen sensing using titania nanotubes", Sens. Actuat. B, 93(1-3), 338-344. https://doi.org/10.1016/S0925-4005(03)00222-3
  53. Wang, Y., Feng, C., Jin, Z., Zhang, J., Yang, J. and Zhang, S. (2006), "A novel N-doped $TiO_{2}$ with high visible light photocatalytic activity", J. Molecul. Catal. A, Chem., 260, 1-3. https://doi.org/10.1016/j.molcata.2006.06.044
  54. Wang, Y., Yang, H., Liu, Y., Wang, H., Shen, H., Yan, J. and Xu, H. (2010), "The use of Ti meshes with self-organized $TiO_{2}$ nanotubes as photoanodes of all-Ti dye-sensitized solar cells", Prog. Photovol. Res. Appl., 18, 285-290.
  55. Wu, G., Nishikawa, T., Ohtani, B. and Chen, A. (2007), "Synthesis and characterization of carbon-doped $TiO_{2}$ nanostructures with enhanced visible light response", Chem. Mater., 19(18), 4530-4537. https://doi.org/10.1021/cm071244m
  56. Xu, J., Yanhui, A., Chen, M. and Fu, D. (2010), "Photoelectrochemical property and photocatalytic activity of N-doped $TiO_{2}$ nanotube arrays", Appl. Surf. Sci., 256, 4397-4401. https://doi.org/10.1016/j.apsusc.2010.02.037
  57. Yamada, Y., Matsuki, N., Ohmori, T., Mametsuka, H., Kondo, M. and Matsuda, A. (2003), "One chip photovoltaic water electrolysis device", Int. J. Hydro. Energy, 28, 1167-9. https://doi.org/10.1016/S0360-3199(02)00280-X
  58. Yang, J., Wang, D., Han, H. and Li, C. (2013), "Roles of cocatalysts in photocatalysis and photoelectrocatalysis", Account. Chem. Res., 46(8), 1900-1909. https://doi.org/10.1021/ar300227e
  59. Yoldas, B.E. and Partlow, D.P. (1985), "Formation of broad band antireflective coatings on fused silica for high power laser applications", Thin Solid. Film., 129, 1-14. https://doi.org/10.1016/0040-6090(85)90089-6

피인용 문헌

  1. Nickel-TiO 2 nanotube anode for photo-electrolysers vol.136, 2016, https://doi.org/10.1016/j.solener.2016.07.040