References
-
Alivov, Y. and Fan, Z.Y. (2010), "Dye-sensitized solar cells using
$TiO_{2}$ nanoparticles transformed from nanotube arrays", J. Mater. Sci., 45, 2902-2906. https://doi.org/10.1007/s10853-010-4281-2 - Burgeth, G. and Kisch, H. (2002), "Photocatalytic and photoelectrochemical properties of titaniachloroplatinate (IV)", Coord. Chem. Rev., 230, 41-47. https://doi.org/10.1016/S0010-8545(02)00095-4
- Cai, Q., Paulose, M., Varghese, O.K. and Grimes, C.A. (2005), "The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation", J. Mater. Res., 20(1), 230-236. https://doi.org/10.1557/JMR.2005.0020
-
Chen, Q., Xu, D., Wu, Z. and Liu, Z. (2008), "Free-standing
$TiO_{2}$ nanotube arrays made by anodic oxidation and ultrasonic splitting", Nanotechnology, 19, 365708. https://doi.org/10.1088/0957-4484/19/36/365708 -
Das, K., Bandyopadhyay, A. and Bose, S. (2008), "Biocompatibility and in situ growth of
$TiO_{2}$ nanotubes on Ti using different electrolyte chemistry", J. Am. Ceram. Soc., 91(9), 2808-2814. https://doi.org/10.1111/j.1551-2916.2008.02545.x - Dinca, M., Surendranath, Y. and Nocera, D.G. (2010), "Nickel-borate oxygen-evolving catalyst that functions under benign conditions", PNAS, 107(23), 10337-10341. https://doi.org/10.1073/pnas.1001859107
- Dong, L., Ma, Y., Wang, Y., Tian, Y., Ye, G. and Jia, X. (2009), "Preparation and characterization of nitrogen-doped titania nanotubes", Mater. Lett., 63(18-19), 1598-1600. https://doi.org/10.1016/j.matlet.2009.04.022
- Dupuis, G. and Menu, M. (2006), "Quantitative characterization of pigment mixtures used in art by fibre-optics diffuse-reflectance spectroscopy", Appl. Phys. A, Mater. Sci. Proc., 83, 469. https://doi.org/10.1007/s00339-006-3522-3
- Fang, D., Liu, S.Q., Chen, R.Y., Huang, K.L., Li, J.S., Yu, C., Qin, D.Y. and Xuebao, W.C. (2008), "Fabrication and characterization of highly ordered porous anodic titania on titanium substrate", J. Inorg. Mater., 23(4), 647-651. https://doi.org/10.3724/SP.J.1077.2008.00647
- Fujishima, A.K. and Honda, K. (1972), "Electrochemical photolysis of water at a semiconductor electrode", Nature, 238, 37-38 https://doi.org/10.1038/238037a0
-
Ghicov, A., Macak, J.M., Tsuchiya, H., Kunze, J., Haeublein, V., Frey, L. and Schmuki, P. (2006a), "Ion implantation and annealing for an efficient N-doping of
$TiO_{2}$ nanotubes", Nano Lett., 6(5), 1080-1082. https://doi.org/10.1021/nl0600979 -
Ghicov, A., Macak, J.M., Tsuchiya, H., Kunze, J., Haeublein, V., Kleber, S. and Schmuki, P. (2006b), "
$TiO_{2}$ nanotube layers: dose effects during nitrogen doping by ion implantation", Chem. Phys. Lett., 419, 426-429. https://doi.org/10.1016/j.cplett.2005.11.102 - Gong, A., Grimes, C.A., Varghese, O.K., Hu, W., Singh, R.S., Chen, Z. and Dickey, E.C. (2001), "Titanium oxide nanotube arrays prepared by anodic oxidation", J. Mater. Res., 16, 3331-3334 https://doi.org/10.1557/JMR.2001.0457
- Grimes, C.A., Varghese, O.K. and Ranjan, S. (2008), The Solar Hydrogen Generation by Water Photoelectrolysis, Springer, New York, NY, USA.
-
Hahn, R., Ghicov, A., Salonen, J., Lehto, V.P. and Schmuki, P. (2007), "Carbon doping of self-organized
$TiO_{2}$ nanotube layers by thermal acetylene treatment", Nanotechnology, 18, 105604. https://doi.org/10.1088/0957-4484/18/10/105604 - Kamat, P., Flumiani, M. and Dawson, A. (2002), "Metal-metal and metal-semiconductor composite nanoclusters", Coll. Surf. A: Physicochem. Eng. Aspec., 202, 269-279. https://doi.org/10.1016/S0927-7757(01)01071-8
- Khaselev, O., Bansal, A. and Turner, J.A. (2001), "High-efficiency integrated multijunction photovoltaic/ electrolysis systems for hydrogen production", Int. J. Hydro. Energy, 26, 127-32. https://doi.org/10.1016/S0360-3199(00)00039-2
- Kelly, N.A. and Gibson, T.L. (2006), "Design and characterization of a robust photoelectrochemical device to generate hydrogen using solarwater splitting", Int. J. Hydro. Energy, 31, 1658-1673. https://doi.org/10.1016/j.ijhydene.2005.12.014
-
Kontos, A.G., Kontos, A.I., Tsoulkleris, D.S., Likodimos, V., Kunze, J., Schmuki, P. and Falaras, P. (2009) "Photo-induced effects on self-organized
$TiO_{2}$ nanotube arrays: the influence of surface morphology", Nanotechnology, 20(4), 045603. https://doi.org/10.1088/0957-4484/20/4/045603 - Li, Q. and Shang, J.K. (2009), "Self-organized nitrogen and fluorine Co-doped titanium oxide nanotube arrays with enhanced visible light photocatalytic performance", Environ. Sci. Tech., 43(23), 8923-8929. https://doi.org/10.1021/es902214s
-
Lin, H., Huang, C.P., Li, W., Ni, C., Ismat, S. and Tseng, Y. (2006), "Size dependency of nanocrystalline
$TiO_{2}$ on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol", Appl. Catal. B: Environ., 68, 1-11. https://doi.org/10.1016/j.apcatb.2006.07.018 -
Linsebigler, A.L., Lu, G. and Yates, J.T. (1995), "Photocatalysis on
$TiO_{2}$ surfaces: principles, mechanisms, and selected results", Chem. Rev., 95, 735-758. https://doi.org/10.1021/cr00035a013 -
Liu, Z. and Misra, M. (2010), "Bifacial dye-sensitized solar cells based on vertically oriented
$TiO_{2}$ nanotube arrays", Nanotechnology, 21, 125703(1-4). https://doi.org/10.1088/0957-4484/21/12/125703 -
Lu, N., Zhao, H., Li, J., Quan, X. and Chen, S. (2008), "Characterization of boron-doped
$TiO_{2}$ nanotube arrays prepared by electrochemical method and its visible light activity", Separat. Purific. Tech., 62, 668-673. https://doi.org/10.1016/j.seppur.2008.03.021 -
Mohapatra, S.K., Misra, M., Mahajan, V.K. and Raja, K.S. (2007), "Design of a highly efficient photoelectrolytic cell for hydrogen generation by water splitting: application of
$TiO_{2}$ -xCx nanotubes as a photoanode and Pt/$TiO_{2}$ nanotubes as a cathode", J. Phys. Chem. C, 111(24), 8677-8685. https://doi.org/10.1021/jp071906v - Mor, G.K., Varghese, O.K., Paulose, M., Mukherjee, N. and Grimes, C.A. (2003), "Fabrication of tapered, conical-shaped titania nanotubes", J. Mater. Res., 18(11), 2588-2593. https://doi.org/10.1557/JMR.2003.0362
- Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K. and Grimes, C.A. (2005a), "Enhanced photocleavage of water using titania nanotube arrays", Nano Lett., 5(1), 191-195. https://doi.org/10.1021/nl048301k
-
Mor, G.K., Varghese, O.K., Paulose, M. and Grimes, C.A. (2005b), "Transparent highly ordered
$TiO_{2}$ nanotube arrays via anodization of titanium thin films", Adv. Funct. Mater., 15, 1291-1296. https://doi.org/10.1002/adfm.200500096 -
Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K. and Grimes, C.A. (2007), "High efficiency double heterojunction polymer photovoltaic cells using highly ordered
$TiO_{2}$ nanotube arrays", Appl. Phys. Lett., 91, 152111. https://doi.org/10.1063/1.2799257 - Mor, G.K., Basham, J., Paulose, M., Kim, S., Varghese, O.K., Vaish, A., Yoriya, S. and Grimes, C.A. (2010), "High-efficiency forster resonance energy transfer in solid-state dye sensitized solar cells", Nano Lett., 10(7), 2387-2394. https://doi.org/10.1021/nl100415q
-
Mura, F., Pozio, A., Masci, A. and Pasquali, M. (2009), "Effect of a galvanostatic treatment on the preparation of highly ordered
$TiO_{2}$ nanotubes" Electrochim. Acta, 54, 3794-3798. https://doi.org/10.1016/j.electacta.2009.01.073 -
Mura, F., Masci, A., Pasquali, M. and Pozio, A. (2010), "Stable
$TiO_{2}$ nanotube arrays with high UV photoconversion efficiency", Electrochimica Acta, 55, 2246-2251. https://doi.org/10.1016/j.electacta.2009.11.060 - Oh, S.H., Finones, R.R., Daraio, C., Chen, L.H. and Jin, S. (2005), "Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes", Biomater., 26(24), 4938-4943. https://doi.org/10.1016/j.biomaterials.2005.01.048
- Oh, S.H. and Jin, S. (2006) "Titanium oxide nanotubes with controlled morphology for enhanced bone growth", Mater. Sci. Eng. C, 26, 1301-1306. https://doi.org/10.1016/j.msec.2005.08.014
-
Oh, H.J., Lee, J.H., Kim, Y.J., Suh, S.J., Lee, J.H. and Chi, C.S. (2008), "Surface characteristics of porous anodic
$TiO_{2}$ layer for biomedical applications", Mater. Chem. Phys., 109, 10-14. https://doi.org/10.1016/j.matchemphys.2007.11.022 -
Park, J.H., Kim, S. and Bard, A.J. (2006), "Novel carbon-doped
$TiO_{2}$ nanotube arrays with high aspect ratios for efficient solar water splitting", Nano Lett., 6(1), 24-28. https://doi.org/10.1021/nl051807y -
Peng, L., Mendelsohn, A.D., LaTempa, T.J., Yoriya, S., Grimes, C.A. and Desai, T.A. (2009), "Long-term small molecule and protein elution from
$TiO_{2}$ nanotubes", Nano Lett., 9(5), 1932-1936. https://doi.org/10.1021/nl9001052 - Popat, K.C., Eltgroth, M., LaTempa, T.J., Grimes, C.A. and Desai, T.A. (2007a), "Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes", Biomater., 28(32), 4880-4888. https://doi.org/10.1016/j.biomaterials.2007.07.037
- Popat, K.C., Eltgroth, M., LaTempa, T.J., Grimes, C.A. and Desai, T.A. (2007b), "Titania nanotubes: a novel platform for drug-eluting coatings for medical implants?", Small, 3(11), 1878-1881. https://doi.org/10.1002/smll.200700412
-
Pozio, A (2014), "Effect of low cobalt loading on
$TiO_{2}$ nanotube arrays for water-splitting", Int. J. Electrochem., 2014, 1-7. -
Pozio, A. (2015), "Effect of tantalum doping on
$TiO_{2}$ nanotube arrays for water-splitting", Modern Res. Catal., 4, 1-12. https://doi.org/10.4236/mrc.2015.41001 - Raja, K.S., Misra, M., Mahajan, V.K., Gandhi, T., Pillai, P. and Mohapatra, S.K. (2006), "Photo-electrochemical hydrogen generation using band-gap modified nanotubular titanium oxide in solar light", J. Power Sour., 161(2), 1450-1457. https://doi.org/10.1016/j.jpowsour.2006.06.044
- Sakthivel, S. and Kisch, H. (2003), "Daylight photocatalysis by carbon-modified titanium dioxide", Angew. Chem. Int. Ed., 42, 4908-4911. https://doi.org/10.1002/anie.200351577
-
Sennik, E., Colak, Z., Kilinc, N. and Ozturk, Z.Z. (2010), "Synthesis of highly-ordered
$TiO_{2}$ nanotubes for a hydrogen sensor", Int. J. Hydro. Energy, 35(9), 4420-4427. https://doi.org/10.1016/j.ijhydene.2010.01.100 -
Shankar, K., Tep, K.C., Mor, G.K. and Grimes, C.A. (2006), "An electrochemical strategy to incorporate nitrogen in nanostructured
$TiO_{2}$ thin films: modification of bandgap and photoelectrochemical properties", J. Phys. D, Appl. Phys., 39, 2361-2366. https://doi.org/10.1088/0022-3727/39/11/008 -
Shankar, K., Mor, G.K., Prakasam, H.E., Yoriya, S., Paulose, M., Varghese, O.K. and Grimes, C.A. (2007), "Highly-ordered
$TiO_{2}$ nanotube arrays up to 220${\mu}m$ in length: use in water photoelectrolysis and dye-sensitized solar cells", Nanotech., 18, 065707. https://doi.org/10.1088/0957-4484/18/6/065707 -
Shrestha, N.K., Yang, M., Nah, Y.C., Paramasivam, I. and Schmuki, P. (2010), "Self-organized
$TiO_{2}$ nanotubes: visible light activation by Ni oxide nanoparticle decoration", Electrochem. Commun., 12, 254-257. https://doi.org/10.1016/j.elecom.2009.12.007 - Simmons, E.L. (1975), "Diffuse reflectance spectroscopy: a comparison of the theories", Appl. Opt., 14, 1380-1386. https://doi.org/10.1364/AO.14.001380
-
Su, Y., Han, S., Zhang, X., Chen, X. and Lei, L. (2008) "Preparation and visible-light-driven photoelectrocatalytic properties of boron-doped
$TiO_{2}$ nanotubes", Mater. Chem. Phys., 110(2/3), 239-246. https://doi.org/10.1016/j.matchemphys.2008.01.036 - Surendranath, Y., Kanan, M.W. and Nocera, D.G. (2010), "Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH", J. Am. Chem. Soc., 132, 16501-16509. https://doi.org/10.1021/ja106102b
- Varghese, O.K., Gong, D., Paulose, M., Ong, K.G., Dickey, E.C. and Grimes, C.A. (2003a), "Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure", Adv. Mater., 15(7-8), 624-627. https://doi.org/10.1002/adma.200304586
- Varghese, O.K., Gong, D., Paulose, M., Ong, K.G. and Grimes, C.A. (2003b), "Hydrogen sensing using titania nanotubes", Sens. Actuat. B, 93(1-3), 338-344. https://doi.org/10.1016/S0925-4005(03)00222-3
-
Wang, Y., Feng, C., Jin, Z., Zhang, J., Yang, J. and Zhang, S. (2006), "A novel N-doped
$TiO_{2}$ with high visible light photocatalytic activity", J. Molecul. Catal. A, Chem., 260, 1-3. https://doi.org/10.1016/j.molcata.2006.06.044 -
Wang, Y., Yang, H., Liu, Y., Wang, H., Shen, H., Yan, J. and Xu, H. (2010), "The use of Ti meshes with self-organized
$TiO_{2}$ nanotubes as photoanodes of all-Ti dye-sensitized solar cells", Prog. Photovol. Res. Appl., 18, 285-290. -
Wu, G., Nishikawa, T., Ohtani, B. and Chen, A. (2007), "Synthesis and characterization of carbon-doped
$TiO_{2}$ nanostructures with enhanced visible light response", Chem. Mater., 19(18), 4530-4537. https://doi.org/10.1021/cm071244m -
Xu, J., Yanhui, A., Chen, M. and Fu, D. (2010), "Photoelectrochemical property and photocatalytic activity of N-doped
$TiO_{2}$ nanotube arrays", Appl. Surf. Sci., 256, 4397-4401. https://doi.org/10.1016/j.apsusc.2010.02.037 - Yamada, Y., Matsuki, N., Ohmori, T., Mametsuka, H., Kondo, M. and Matsuda, A. (2003), "One chip photovoltaic water electrolysis device", Int. J. Hydro. Energy, 28, 1167-9. https://doi.org/10.1016/S0360-3199(02)00280-X
- Yang, J., Wang, D., Han, H. and Li, C. (2013), "Roles of cocatalysts in photocatalysis and photoelectrocatalysis", Account. Chem. Res., 46(8), 1900-1909. https://doi.org/10.1021/ar300227e
- Yoldas, B.E. and Partlow, D.P. (1985), "Formation of broad band antireflective coatings on fused silica for high power laser applications", Thin Solid. Film., 129, 1-14. https://doi.org/10.1016/0040-6090(85)90089-6
Cited by
- Nickel-TiO 2 nanotube anode for photo-electrolysers vol.136, 2016, https://doi.org/10.1016/j.solener.2016.07.040