DOI QR코드

DOI QR Code

The YouTube Video Recommendation Algorithm using Users' Social Category

사용자의 소셜 카테고리를 이용한 유튜브 동영상 추천 알고리즘

  • 유소엽 (가천대학교 소프트웨어설계경영학과) ;
  • 정옥란 (가천대학교 소프트웨어학과)
  • Received : 2015.01.09
  • Accepted : 2015.03.07
  • Published : 2015.05.15

Abstract

With the rapid progression of the Internet and smartphones, YouTube has grown significantly as a social media sharing site and has become popular all around the world. As users share videos through YouTube, social data are created and users look for video recommendations related to their interests. In this paper, we extract users' social category based on their social relationship and social category classification list using YouTube data. We propose the YouTube recommendation algorithm using the extracted users' social category for more accurate and meaningful recommendations. We show experiment results of its validation.

인터넷과 스마트폰의 발전과 함께 소셜 미디어 공유 사이트인 유튜브도 크게 성장하여 수많은 동영상을 공유하는 사이트가 됐다. 사용자들이 유튜브를 통해 동영상을 공유하면서 소셜 데이터를 만들어내고, 많은 동영상들 중에서 본인의 관심사가 반영된 동영상 추천을 원하게 된다. 본 논문에서는 유튜브 데이터를 이용하여 사용자의 사회적 관계와 유튜브의 특징이 반영된 소셜 카테고리 분류 목록을 기반으로 사용자의 소셜 카테고리를 추출한다. 우리는 좀 더 정확하고 의미있는 추천을 위해 추출된 사용자 소셜 카테고리를 이용한 유튜브 동영상을 추천하는 알고리즘을 제안하였다. 또한 실험을 통해 그 유효성을 검증하였다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. R. Zhou, S. Khemmarat, and L. Gao, "The impact of YouTube recommendation system on video views," Proc. of the 10th ACM SIGCOMM conference on Internet measurement, pp. 404-410, ACM, 2010.
  2. M. Bertini, A. D. Bimbo, A. Ferracani, F. Gelli, D. Maddaluno, and D. Pezzatini, "Socially-aware video recommendation using users' profiles and crowdsourced annotations," Proc. of the 2nd international workshop on Socially-aware multimedia, pp. 13-18, ACM, 2013.
  3. X. Ma, H. Wang, H. Li, J. Liu, and H. Jiang, "Exploring sharing patterns for video recommendation on YouTube-like social media," Multimedia Systems, Vol. 20, No. 6, pp. 675-691, 2014. https://doi.org/10.1007/s00530-013-0309-1
  4. S. Y. Yoo, and O. R. Jeong, "Social Category based Recommendation Method," Journal of Korean Society for Internet Information, Vol. 15, No. 5, pp. 73-82, KSII, Oct, 2014. (in Korean)
  5. P. Kapanipathi, P. Jain, C. Venkataramani, and A. Sheth, "User Interest Identification on Twitter Using a Hierarchical Knowledge Base," The Semantic Web: Trends and Challenges, pp. 99-113, Springer International Publishing, 2014.
  6. M. Bertini, A. D. Bimbo, A. Ferracani, F. Gelli, D. Maddaluno, and D. Pezzatini, "A Novel framework for Collaborative Video Recommendation, interest Discovery and friendship Suggestion Based on Semantic Profiling," Proc. of the 21st ACM international conference on Multimedia, pp. 451-452, ACM, 2013.
  7. D. K. Krishnappa, M. Zink, C. Griwodz, and P. Halvorsen, "Cache-centric Video Recommendation: An Approach to Improve the Efficiency of YouTube Caches," Proc. of the 4th ACM Multimedia Systems Conference, pp. 261-270, ACM, 2013.
  8. B.Yang, T.Mei, X. S. Hua, L. Yang, and S. Q. Yang, "Online Video Recommendation Based on Multimodal Fusion and Relevance Feedback," Proc. of the 6th ACM international conference on Image and video retrieval, pp. 73-80, ACM, 2007.
  9. Q. Huang, B. Chen, J. Wang, and T. Mei, "Personalized video recommendation through graph propagation," ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), Vol. 10, No. 4, pp. 32, 2014.
  10. YouTube Data API (v3) [Online], Available: https://developers.google.com/youtube/v3/ (2014).
  11. DMOZ ODP [Online], Available: http://www.dmoz.org/ (2014).
  12. C. J. Yoo, and O. R. Jeong, "Category Extraction for Multimedia File Search," Information Science and Applications (ICISA), 2013 International Conference on, pp. 1-3, IEEE, 2013.
  13. B. Chen, J. Wang, Q. Huang, and T. Mei, "Personalized video recommendation through tripartite graph propagation," Proc. of the 20th ACM international conference on Multimedia, pp. 1133-1136, ACM, 2012.
  14. S.Baluja, R.Seth, D.Sivakumar, Y.Jing, J.Yagnik, S.Kumar, D.Ravichandran, and M.Aly, "Video suggestion and discovery for YouTube: Taking random walks through the view graph," Proc. of the 17th International Conference on World Wide Web, pp. 895-904, ACM, 2008.
  15. J.Davidson, B.Liebald, J.Liu, P.Nandy, T.Van Vleet, U.Gargi, S.Gupta, Y.He, M.Lambert, B.Livingston, and D.Sampath, "The YouTube Video Recommendation System," Proc. of the 4th ACM Conference on Recommender Systems, pp. 293-296, ACM, 2010.

Cited by

  1. An Ensemble Method for Latent Interest Reasoning of Mobile Users vol.21, pp.11, 2015, https://doi.org/10.5626/KTCP.2015.21.11.706