DOI QR코드

DOI QR Code

Evaluation of energy response of space steel frames subjected to seismic loads

  • Ozakgul, Kadir (Department of Civil Engineering, Istanbul Technical University)
  • 투고 : 2014.09.12
  • 심사 : 2015.04.04
  • 발행 : 2015.05.25

초록

In this paper, seismic energy response of inelastic steel structures under earthquake excitations is investigated. For this purpose, a numerical procedure based on nonlinear dynamic analysis is developed by considering material, geometric and connection nonlinearities. Material nonlinearity is modeled by the inversion of Ramberg-Osgood equation. Nonlinearity caused by the interaction between the axial force and bending moment is also defined considering stability functions, while the geometric nonlinearity caused by axial forces is described using geometric stiffness matrix. Cyclic behaviour of steel connections is taken into account by employing independent hardening model. Dynamic equation of motion is solved by Newmark's constant acceleration method in the time history domain. Energy response analysis of space frames is performed by using this proposed numerical method. Finally, for the first time, the distribution of the different energy types versus time at the duration of the earthquake ground motion is obtained where in addition error analysis for the numerical solutions is carried out and plotted depending on the relative error calculated as a function of energy balance versus time.

키워드

참고문헌

  1. Aksoylar, N.D., Elnashai, A.S. and Mahmoud, H. (2012), "Seismic performance of semirigid momentresisting frames under far and near field records", ASCE J. Struct. Eng., 138(2), 157-169. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000455
  2. Austin, M.A. and Lin, W.J. (2004), "Energy balance assessment of base-isolated structures", ASCE J. Struct. Eng., 130(3), 347-358.
  3. Barsan, G.M. and Chiorean, C.G. (1999), "Computer program for large deflection elasto-plastic analysis of semi-rigid steel frameworks", Comput. Struct., 72(6), 699-711. https://doi.org/10.1016/S0045-7949(98)00310-1
  4. Chan, S.L. and Chui, P.P.T. (2000), Non-linear static and cyclic analysis of steel frames with semi-rigid connections, Elsevier Science Publishing Co., New York, NY, USA.
  5. Chan, S.L. and Zhou, Z.H. (1995), "Second-order elastic analysis of frames using single imperfect element per member", ASCE J. Struct. Eng., 121(6), 939-945. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:6(939)
  6. Chen, W.F. and Chan, S.L. (1995), "Second-order inelastic analysis of steel frames using element with midspan and end springs", ASCE J. Struct. Eng., 121(3), 530-541. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:3(530)
  7. Chen, W.F., Goto, Y. and Liew, J.Y.R. (1996), Stability design of semi-rigid frames, John Wiley & Sons Inc., New York, NY, USA.
  8. Chiorean, C.G. (2009), "A computer method for nonlinear inelastic analysis of 3D semi-rigid steel frameworks", Eng. Struct., 31(12), 3016-3033. https://doi.org/10.1016/j.engstruct.2009.08.003
  9. Chiorean, C.G. and Barsan, G.M. (2005), "Large deflection distributed plasticity analysis of 3D steel frameworks", Comput. Struct., 83(19-20), 1555-1571. https://doi.org/10.1016/j.compstruc.2005.02.011
  10. Chopra, A.K. (2012), Dynamics of structures: theory and applications to earthquake engineering, Prentice- Hall, New Jersey, NJ, USA.
  11. Ekhande, S.G., Selvappalam, M. and Madugula, M.K.S. (1989), "Stability functions for three-dimensional beam-columns", ASCE J. Struct. Div., 115(2), 467-479. https://doi.org/10.1061/(ASCE)0733-9445(1989)115:2(467)
  12. Garlock, M.M., Ricles, J.M. and Sause, R. (2003), "Cyclic load tests and analysis of bolted top-and-seat angle connections", ASCE J. Struct. Eng., 129(12), 1615-1625. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:12(1615)
  13. Gong, Y., Xue, Y., Xu, L. and Grierson, D.E. (2012), "Energy-based design optimization of steel building frameworks using nonlinear response history analysis", J. Construct. Steel Res., 68(1), 43-50. https://doi.org/10.1016/j.jcsr.2011.07.002
  14. Hadianfard, M.A. (2012), "Using integrated displacement method to time-history analysis of steel frames with nonlinear flexible connections", Struct. Eng. Mech., 41(5), 675-689. https://doi.org/10.12989/sem.2012.41.5.675
  15. Ivanyi, M. (2000), "Full-scale tests of steel frames with semi-rigid connections", Eng. Struct., 22(2), 168-179. https://doi.org/10.1016/S0141-0296(98)00106-0
  16. Jonatowski, J.J. and Birnstiel, C. (1970), "Inelastic stiffened suspension space structures", ASCE J. Struct. Div., 96(6), 1143-1166.
  17. Kalkan, E. and Kunnath, S.K. (2008), "Relevance of absolute and relative energy content in seismic evaluation of structures", Adv. Struct. Eng., 11(1), 1-18. https://doi.org/10.1260/136943308784069478
  18. Kim, S.E., Ngo-Huu, C. and Lee, D.H. (2006), "Second-order inelastic dynamic analysis of 3-D steel frames", Int. J. Solid. Struct., 43(6), 1693-1709. https://doi.org/10.1016/j.ijsolstr.2005.06.018
  19. Kim, S.E., Park, M.H. and Choi, S.H. (2001), "Direct design of three-dimensional frames using practical advanced analysis", Eng. Struct., 23(11), 1491-1502. https://doi.org/10.1016/S0141-0296(01)00041-4
  20. Kishi, N. and Chen, W.F. (1990), "Moment-rotation relations of semi-rigid connections with angles", ASCE J. Struct. Eng., 116(7), 1813-1834. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:7(1813)
  21. Kukreti, A.R. and Abolmaali, A.S. (1999), "Moment-rotation hysteresis behavior of top and seat angle steel frame connections", ASCE J. Struct. Eng., 125(8), 810-820. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:8(810)
  22. Leger, P. and Dussault, S. (1992), "Seismic-energy dissipation in MDOF structures", ASCE J. Struct. Eng., 118(5), 1251-1269. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1251)
  23. Liew, J.Y.R., Chen, H., Shanmugam, N.E. and Chen, W.F. (2000), "Improved nonlinear plastic hinge analysis of space frame structures", Eng. Struct., 22(10), 1324-1338. https://doi.org/10.1016/S0141-0296(99)00085-1
  24. Liu, Y. (2010), "Semi-rigid connection modeling for steel frameworks", Struct. Eng. Mech., 35(4), 431-457. https://doi.org/10.12989/sem.2010.35.4.431
  25. Manfredi, G. (2001), "Evaluation of seismic energy demand", Earthq. Eng. Struct. Dyn., 30(4), 485-499. https://doi.org/10.1002/eqe.17
  26. Moustafa, A. (2011), "Damage-based design earthquake loads for single-degree-of-freedom inelastic structures", ASCE J. Struct. Eng., 137(3), 456-467. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000074
  27. Ngo-Huu, C., Kim, S.E. and Oh, J.R. (2007), "Nonlinear analysis of space steel frames using fiber plastic hinge concept", Eng. Struct., 29(4), 649-657. https://doi.org/10.1016/j.engstruct.2006.06.008
  28. Ngo-Huu, C., Nguyen, P.C. and Kim, S.E. (2012), "Second-order plastic-hinge analysis of space semi-rigid steel frames", Thin Wall. Struct., 60, 98-104. https://doi.org/10.1016/j.tws.2012.06.019
  29. Nguyen, P.C. and Kim, S.E. (2013), "Nonlinear elastic dynamic analysis of space steel frames with semirigid connections", J. Construct. Steel Res., 84, 72-81. https://doi.org/10.1016/j.jcsr.2013.02.004
  30. Orbison, J.G., McGuire, W. and Abel, J.F. (1982), "Yield surface applications in nonlinear steel frame analysis", Comput. Meth. Appl. Mech. Eng., 33(1-3), 557-573. https://doi.org/10.1016/0045-7825(82)90122-0
  31. Ozakgul, K. (2006), "Determination of failure mechanisms and ductility of 3D steel frames under earthquake loads with three components", PhD Dissertation, Istanbul Technical University, Istanbul.
  32. Salazar, A.R. and Haldar, A. (2001), "Energy dissipation at PR frames under seismic loading", ASCE J. Struct. Eng., 127(5), 588-592. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:5(588)
  33. SAP2000, (2011), Structural analysis program, Computers and Structures Inc., Berkeley, California, USA.
  34. Segal, F. and Val, D.V. (2006), "Energy evaluation for Ramberg-Osgood hysteretic model", ASCE J. Struct. Eng., 132(9), 907-913.
  35. Sekulovic, M. and Nefovska-Danilovic, M. (2008), "Contribution to transient analysis of inelastic steel frames with semi-rigid connections", Eng. Struct., 30(4), 976-989. https://doi.org/10.1016/j.engstruct.2007.06.004
  36. Shugyo, M. (2003), "Elastoplastic large deflection analysis of three-dimensional steel frames", ASCE J. Struct. Eng., 129(9), 1259-1267. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:9(1259)
  37. Thai, H.T. and Kim, S.E. (2011), "Second-order inelastic dynamic analysis of steel frames using fiber hinge method", J. Construct. Steel Res., 67(10), 1485-1494. https://doi.org/10.1016/j.jcsr.2011.03.022
  38. Uang, C.M. and Bertero, V.V. (1990), "Evaluation of seismic energy in structures", Earthq. Eng. Struct. Dyn., 19(1), 77-90. https://doi.org/10.1002/eqe.4290190108
  39. USGS, (2014), United State Geological Survey, National Strong-Motion Project, http://nsmp.wr.usgs.gov.
  40. Uzgider, E.A. (1980), "Inelastic response of space frames to dynamic loads", Comput. Struct., 11(1-2), 97-112. https://doi.org/10.1016/0045-7949(80)90150-9
  41. Wang, Z. and Wong, K.K.F. (2009), "Energy evaluation of inelastic structures subjected to random earthquake excitations", Struct. Des. Tall Spec. Build., 18(5), 559-571. https://doi.org/10.1002/tal.455
  42. White, D.W., Surovek, A.E., Alemdar, B.N., Chang, C.J., Kim, Y.D. and Kuchenbecker, G.H. (2006), "Stability analysis and design of steel building frames using the 2005 AISC specification", Steel Struct., 6, 71-91. https://doi.org/10.12989/scs.2006.6.1.071
  43. Wong, K.K.F. and Wang, Y. (2001), "Energy-based damage assessment on structures during earthquakes", Struct. Des. Tall Spec. Build., 10(2), 135-154. https://doi.org/10.1002/tal.174
  44. Wong, K.K.F. and Yang, R. (2002), "Earthquake response and energy evaluation of inelastic structures", ASCE J. Eng. Mech., 128(3), 308-317. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:3(308)
  45. Wong, K.K.F. and Zhao, D. (2007), "Uncoupling of potential energy in nonlinear seismic analysis of framed structures", ASCE J. Eng. Mech., 133(10), 1061-1071. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:10(1061)
  46. Zahrah, T.F. and Hall, W.J. (1994), "Earthquake energy absorption in SDOF structures", ASCE J. Eng. Mech., 110(8), 1757-1772.

피인용 문헌

  1. Blast loaded plates: Simplified analytical nonlinear dynamic approach vol.28, pp.None, 2020, https://doi.org/10.1016/j.istruc.2020.10.043