DOI QR코드

DOI QR Code

Nonlocal integral elasticity analysis of beam bending by using finite element method

  • Taghizadeh, M. (Department of Aerospace Engineering and Centre of Excellence in Computational Aerospace Engineering, Amirkabir University of Technology) ;
  • Ovesy, H.R. (Department of Aerospace Engineering and Centre of Excellence in Computational Aerospace Engineering, Amirkabir University of Technology) ;
  • Ghannadpour, S.A.M. (Department of Aerospace Engineering, Faculty of New Technologies and Engineering, Shahid Beheshti University)
  • Received : 2014.06.10
  • Accepted : 2015.04.04
  • Published : 2015.05.25

Abstract

In this study, a 2-D finite element formulation in the frame of nonlocal integral elasticity is presented. Subsequently, the bending problem of a nanobeam under different types of loadings and boundary conditions is solved based on classical beam theory and also 3-D elasticity theory using nonlocal finite elements (NL-FEM). The obtained results are compared with the analytical and numerical results of nonlocal differential elasticity. It is concluded that the classical beam theory and the nonlocal differential elasticity can separately lead to significant errors for the problem under consideration as distinct from 3-D elasticity and nonlocal integral elasticity respectively.

Keywords

References

  1. Adali, S. (2008), "Variational principles for multi-walled carbon nanotubes undergoing buckling based on nonlocal elasticity theory", Phys. Lett. A, 372(35), 5701-5705. https://doi.org/10.1016/j.physleta.2008.07.003
  2. Baker, C.T.H. (1977), The Numerical Treatment of Integral Equations, Clarendon Press, Oxford, UK.
  3. Bazant, Z.P. and Chang, T.P. (1984), "Instability of nonlocal continuum and strain averaging", J. Eng. Mech., 110(10), 1441-1450. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:10(1441)
  4. Berrabah, H.M., Tounsi, A., Semmah, A. and. Adda Bedia, E.A. (2013), "Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nanobeams", Struct. Eng. Mech., 48(3), 351-365. https://doi.org/10.12989/sem.2013.48.3.351
  5. Challamel, N. and Wang, C.M. (2008), "The small length scale effect for a non-local cantilever beam: a paradox solved", Nanotechnology, 19, 345703. https://doi.org/10.1088/0957-4484/19/34/345703
  6. Challamel, N., Zhang, Z., Wang, C.M., Reddy, J.N., Wang, Q., Michelitsch, T. and Collet, B. (2014), "On nonconservativeness of Eringen's nonlocal elasticity in beam mechanics: correction from a discrete-based approach", Arch. Appl. Mech., 84(9), 1275-1292. https://doi.org/10.1007/s00419-014-0862-x
  7. Eringen, A.C. (1978), "Linear crack subject to shear", Int. J. Fract., 14(4), 367-379. https://doi.org/10.1007/BF00015990
  8. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54, 4703-4710. https://doi.org/10.1063/1.332803
  9. Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer-Verlag, New York, USA.
  10. Eringen, A.C. and Balta, F. (1978), "Screw dislocation in non-local hexagonal elastic crystals", Cryst. Latt. Def. Amorp., 7, 183-189.
  11. Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10, 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
  12. Eringen, A.C. and Kim, B.S. (1977), "Relation between nonlocal elasticity and lattice dynamics", Cryst. Latt. Def. Amorp., 7, 51-57.
  13. Eringen, A.C. and Kim, B.S. (1974), "Stress concentration at the tip of a crack", Mech. Res. Commun., 1, 233-237. https://doi.org/10.1016/0093-6413(74)90070-6
  14. Eringen, A.C., Peziale, C.G.S. and Kim, B.S. (1977), "Crack-tip problem in non-local elasticity", J. Mech. Phys. Solid., 25(5), 339-355. https://doi.org/10.1016/0022-5096(77)90002-3
  15. Ghannadpour, S.A.M. and Mohammadi, B. (2006), "Vibration of nonlocal Euler beams using Chebyshev polynomials", Key Eng. Mater., 471, 1016-1021.
  16. Ghannadpour, S.A.M., Mohammadi, B. and Fazilati, J. (2014), "Bending, buckling and vibration problems of nonlocal Euler beams using Ritz method", Compos. Struct., 96, 584-589.
  17. Hu, Y., Liew, K.M., Wang, Q., He, X.Q. and Yakobson, B.I. (2008), "Nonlocal shell model for flexural wave propagation in double-walled carbon nanotubes", J. Mech. Phys. Solid., 56, 3475. https://doi.org/10.1016/j.jmps.2008.08.010
  18. Kroner, E. (1967), "Elasticity theory of materials with long range cohesive forces", Int. J. Solid. Struct., 3 731-742. https://doi.org/10.1016/0020-7683(67)90049-2
  19. Krumhansl, J.A. (1968), Some Considerations on the Relations Between Solid State Physics and Generalized Continuum Mechanics, Ed. E. Kroner, Mechanics of Generalized Continua, Springer-Verlag, New York, USA.
  20. Lewis, B.A. (1973), "On the numerical solution of Fredholm integral equations of the first kind", J. Inst. Math. Appl., 16, 207-220.
  21. Maleknejad, K. and Sohrabi, S. (2007), "Numerical solution of Fredholm integral equations of the first kind by using Legendre wavelets", Appl. Math. Comput., 186, 836-843. https://doi.org/10.1016/j.amc.2006.08.023
  22. Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nanotechnology", Int. J. Eng. Sci., 41, 305-312. https://doi.org/10.1016/S0020-7225(02)00210-0
  23. Phadikar, J.K. and Pradhan, S.C. (2010), "Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates", Comput. Mater. Sci., 49(3), 492-499. https://doi.org/10.1016/j.commatsci.2010.05.040
  24. Pisano, A.A. and Fuschi, P. (2003), "Closed form solution for a nonlocal elastic bar in tension", Int. J. Solid. Struct., 40(1), 13-23. https://doi.org/10.1016/S0020-7683(02)00547-4
  25. Pisano, A.A., Sofi, A. and Fuschi, P. (2009), "Nonlocal integral elasticity: 2D finite element based solutions", Int. J. Solid. Struct, 46(21), 3836-3849. https://doi.org/10.1016/j.ijsolstr.2009.07.009
  26. Polizzotto, C. (2001), "Nonlocal elasticity and related variational principles", Int. J. Solid. Struct., 38, 7359-7380. https://doi.org/10.1016/S0020-7683(01)00039-7
  27. Polizzotto, C. (2002), "Thermodynamics and continuum fracture mechanics for nonlocal-elastic plastic materials", Eur. J. Mech. A-Solid., 21(1), 85-103. https://doi.org/10.1016/S0997-7538(01)01200-1
  28. Pradhan, S.C. and Phadikar, J.K (2009), "Bending, buckling and vibration analyses of nonhomogeneous nanotubes using GDQ and nonlocal elasticity theory", Struct. Eng. Mech., 33(2), 193-213. https://doi.org/10.12989/sem.2009.33.2.193
  29. Wang, C.M., Kitipornchai, S., Lim, C.W. and Esienberger, M. (2008), "Beam bending solutions based on nonlocal Timoshenko beam theory", J. Eng. Mech., ASCE, 134(6), 475-481. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:6(475)
  30. Wang, C.M., Zhang, Y.Y., Ramesh, S.S. and Kitipornchai, S. (2006), "Buckling analysis of micro and nanorads/ tubes based on nonlocal Timoshenko beam theory", J. Phys. D Appl. Phys., 39(17), 3904-3909. https://doi.org/10.1088/0022-3727/39/17/029
  31. Wang, Q. and Liew, K.M. (2007), "Application of nonlocal continuum mechanics to static analysis of micro- and nano-structures", Phys. Lett. A, 363(3), 236-242. https://doi.org/10.1016/j.physleta.2006.10.093
  32. Wang, Q. and Wang, C.M. (2007), "The constitutive relation and small scale parameter of nonlocal continuum mechanics for modeling carbon nanotubes", Nanotechnology, 18(7), 075702. https://doi.org/10.1088/0957-4484/18/7/075702

Cited by

  1. Nonlocal integral approach to the dynamical response of nanobeams vol.115-116, 2016, https://doi.org/10.1016/j.ijmecsci.2016.06.013
  2. Seismic Analysis of Concrete Dam by Using Finite Element Method vol.103, 2017, https://doi.org/10.1051/matecconf/201710302024
  3. Free vibration characteristics of nanoscaled beams based on nonlocal integral elasticity theory 2017, https://doi.org/10.1177/1077546317717867
  4. Bending, buckling and free vibration analysis of Euler-Bernoulli nanobeams using Eringen’s nonlocal integral model via finite element method vol.179, 2017, https://doi.org/10.1016/j.compstruct.2017.07.019
  5. Buckling of nonuniform carbon nanotubes under concentrated and distributed axial loads vol.8, pp.2, 2017, https://doi.org/10.5194/ms-8-299-2017
  6. Resonance frequencies of size dependent perforated nonlocal nanobeam vol.24, pp.9, 2018, https://doi.org/10.1007/s00542-018-3910-6
  7. Viscoelastic free vibration behavior of nano-scaled beams via finite element nonlocal integral elasticity approach pp.1741-2986, 2018, https://doi.org/10.1177/1077546318783556
  8. A unified formulation for static behavior of nonlocal curved beams vol.59, pp.3, 2015, https://doi.org/10.12989/sem.2016.59.3.475
  9. Surface effects on vibration and buckling behavior of embedded nanoarches vol.64, pp.1, 2017, https://doi.org/10.12989/sem.2017.64.1.001
  10. Dynamic characteristics of curved inhomogeneous nonlocal porous beams in thermal environment vol.64, pp.1, 2015, https://doi.org/10.12989/sem.2017.64.1.121
  11. Wave dispersion characteristics of nonlocal strain gradient double-layered graphene sheets in hygro-thermal environments vol.65, pp.6, 2018, https://doi.org/10.12989/sem.2018.65.6.645
  12. Wave propagation analysis of smart strain gradient piezo-magneto-elastic nonlocal beams vol.66, pp.2, 2018, https://doi.org/10.12989/sem.2018.66.2.237
  13. A unified formulation for modeling of inhomogeneous nonlocal beams vol.66, pp.3, 2015, https://doi.org/10.12989/sem.2018.66.3.369
  14. Buckling analysis of nanoplate-type temperature-dependent heterogeneous materials vol.7, pp.1, 2015, https://doi.org/10.12989/anr.2019.7.1.051
  15. Nonlocal nonlinear analysis of nano-graphene sheets under compression using semi-Galerkin technique vol.7, pp.5, 2015, https://doi.org/10.12989/anr.2019.7.5.311
  16. Effect of nano glass cenosphere filler on hybrid composite eigenfrequency responses - An FEM approach and experimental verification vol.7, pp.6, 2015, https://doi.org/10.12989/anr.2019.7.6.419
  17. Experimental and numerical bending deflection of cenosphere filled hybrid (Glass/Cenosphere/Epoxy) composite vol.73, pp.6, 2015, https://doi.org/10.12989/sem.2020.73.6.715
  18. A comprehensive review on the modeling of smart piezoelectric nanostructures vol.74, pp.5, 2015, https://doi.org/10.12989/sem.2020.74.5.611
  19. Nonlinear deflection responses of layered composite structure using uncertain fuzzified elastic properties vol.35, pp.6, 2015, https://doi.org/10.12989/scs.2020.35.6.753
  20. On scale-dependent stability analysis of functionally graded magneto-electro-thermo-elastic cylindrical nanoshells vol.75, pp.6, 2015, https://doi.org/10.12989/sem.2020.75.6.659
  21. Wave propagation analysis of a rectangular sandwich composite plate with tunable magneto-rheological fluid core vol.27, pp.11, 2015, https://doi.org/10.1177/1077546320938189