References
- Adali, S. (2008), "Variational principles for multi-walled carbon nanotubes undergoing buckling based on nonlocal elasticity theory", Phys. Lett. A, 372(35), 5701-5705. https://doi.org/10.1016/j.physleta.2008.07.003
- Baker, C.T.H. (1977), The Numerical Treatment of Integral Equations, Clarendon Press, Oxford, UK.
- Bazant, Z.P. and Chang, T.P. (1984), "Instability of nonlocal continuum and strain averaging", J. Eng. Mech., 110(10), 1441-1450. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:10(1441)
- Berrabah, H.M., Tounsi, A., Semmah, A. and. Adda Bedia, E.A. (2013), "Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nanobeams", Struct. Eng. Mech., 48(3), 351-365. https://doi.org/10.12989/sem.2013.48.3.351
- Challamel, N. and Wang, C.M. (2008), "The small length scale effect for a non-local cantilever beam: a paradox solved", Nanotechnology, 19, 345703. https://doi.org/10.1088/0957-4484/19/34/345703
- Challamel, N., Zhang, Z., Wang, C.M., Reddy, J.N., Wang, Q., Michelitsch, T. and Collet, B. (2014), "On nonconservativeness of Eringen's nonlocal elasticity in beam mechanics: correction from a discrete-based approach", Arch. Appl. Mech., 84(9), 1275-1292. https://doi.org/10.1007/s00419-014-0862-x
- Eringen, A.C. (1978), "Linear crack subject to shear", Int. J. Fract., 14(4), 367-379. https://doi.org/10.1007/BF00015990
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54, 4703-4710. https://doi.org/10.1063/1.332803
- Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer-Verlag, New York, USA.
- Eringen, A.C. and Balta, F. (1978), "Screw dislocation in non-local hexagonal elastic crystals", Cryst. Latt. Def. Amorp., 7, 183-189.
- Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10, 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
- Eringen, A.C. and Kim, B.S. (1977), "Relation between nonlocal elasticity and lattice dynamics", Cryst. Latt. Def. Amorp., 7, 51-57.
- Eringen, A.C. and Kim, B.S. (1974), "Stress concentration at the tip of a crack", Mech. Res. Commun., 1, 233-237. https://doi.org/10.1016/0093-6413(74)90070-6
- Eringen, A.C., Peziale, C.G.S. and Kim, B.S. (1977), "Crack-tip problem in non-local elasticity", J. Mech. Phys. Solid., 25(5), 339-355. https://doi.org/10.1016/0022-5096(77)90002-3
- Ghannadpour, S.A.M. and Mohammadi, B. (2006), "Vibration of nonlocal Euler beams using Chebyshev polynomials", Key Eng. Mater., 471, 1016-1021.
- Ghannadpour, S.A.M., Mohammadi, B. and Fazilati, J. (2014), "Bending, buckling and vibration problems of nonlocal Euler beams using Ritz method", Compos. Struct., 96, 584-589.
- Hu, Y., Liew, K.M., Wang, Q., He, X.Q. and Yakobson, B.I. (2008), "Nonlocal shell model for flexural wave propagation in double-walled carbon nanotubes", J. Mech. Phys. Solid., 56, 3475. https://doi.org/10.1016/j.jmps.2008.08.010
- Kroner, E. (1967), "Elasticity theory of materials with long range cohesive forces", Int. J. Solid. Struct., 3 731-742. https://doi.org/10.1016/0020-7683(67)90049-2
- Krumhansl, J.A. (1968), Some Considerations on the Relations Between Solid State Physics and Generalized Continuum Mechanics, Ed. E. Kroner, Mechanics of Generalized Continua, Springer-Verlag, New York, USA.
- Lewis, B.A. (1973), "On the numerical solution of Fredholm integral equations of the first kind", J. Inst. Math. Appl., 16, 207-220.
- Maleknejad, K. and Sohrabi, S. (2007), "Numerical solution of Fredholm integral equations of the first kind by using Legendre wavelets", Appl. Math. Comput., 186, 836-843. https://doi.org/10.1016/j.amc.2006.08.023
- Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nanotechnology", Int. J. Eng. Sci., 41, 305-312. https://doi.org/10.1016/S0020-7225(02)00210-0
- Phadikar, J.K. and Pradhan, S.C. (2010), "Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates", Comput. Mater. Sci., 49(3), 492-499. https://doi.org/10.1016/j.commatsci.2010.05.040
- Pisano, A.A. and Fuschi, P. (2003), "Closed form solution for a nonlocal elastic bar in tension", Int. J. Solid. Struct., 40(1), 13-23. https://doi.org/10.1016/S0020-7683(02)00547-4
- Pisano, A.A., Sofi, A. and Fuschi, P. (2009), "Nonlocal integral elasticity: 2D finite element based solutions", Int. J. Solid. Struct, 46(21), 3836-3849. https://doi.org/10.1016/j.ijsolstr.2009.07.009
- Polizzotto, C. (2001), "Nonlocal elasticity and related variational principles", Int. J. Solid. Struct., 38, 7359-7380. https://doi.org/10.1016/S0020-7683(01)00039-7
- Polizzotto, C. (2002), "Thermodynamics and continuum fracture mechanics for nonlocal-elastic plastic materials", Eur. J. Mech. A-Solid., 21(1), 85-103. https://doi.org/10.1016/S0997-7538(01)01200-1
- Pradhan, S.C. and Phadikar, J.K (2009), "Bending, buckling and vibration analyses of nonhomogeneous nanotubes using GDQ and nonlocal elasticity theory", Struct. Eng. Mech., 33(2), 193-213. https://doi.org/10.12989/sem.2009.33.2.193
- Wang, C.M., Kitipornchai, S., Lim, C.W. and Esienberger, M. (2008), "Beam bending solutions based on nonlocal Timoshenko beam theory", J. Eng. Mech., ASCE, 134(6), 475-481. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:6(475)
- Wang, C.M., Zhang, Y.Y., Ramesh, S.S. and Kitipornchai, S. (2006), "Buckling analysis of micro and nanorads/ tubes based on nonlocal Timoshenko beam theory", J. Phys. D Appl. Phys., 39(17), 3904-3909. https://doi.org/10.1088/0022-3727/39/17/029
- Wang, Q. and Liew, K.M. (2007), "Application of nonlocal continuum mechanics to static analysis of micro- and nano-structures", Phys. Lett. A, 363(3), 236-242. https://doi.org/10.1016/j.physleta.2006.10.093
- Wang, Q. and Wang, C.M. (2007), "The constitutive relation and small scale parameter of nonlocal continuum mechanics for modeling carbon nanotubes", Nanotechnology, 18(7), 075702. https://doi.org/10.1088/0957-4484/18/7/075702
Cited by
- Nonlocal integral approach to the dynamical response of nanobeams vol.115-116, 2016, https://doi.org/10.1016/j.ijmecsci.2016.06.013
- Seismic Analysis of Concrete Dam by Using Finite Element Method vol.103, 2017, https://doi.org/10.1051/matecconf/201710302024
- Free vibration characteristics of nanoscaled beams based on nonlocal integral elasticity theory 2017, https://doi.org/10.1177/1077546317717867
- Bending, buckling and free vibration analysis of Euler-Bernoulli nanobeams using Eringen’s nonlocal integral model via finite element method vol.179, 2017, https://doi.org/10.1016/j.compstruct.2017.07.019
- Buckling of nonuniform carbon nanotubes under concentrated and distributed axial loads vol.8, pp.2, 2017, https://doi.org/10.5194/ms-8-299-2017
- Resonance frequencies of size dependent perforated nonlocal nanobeam vol.24, pp.9, 2018, https://doi.org/10.1007/s00542-018-3910-6
- Viscoelastic free vibration behavior of nano-scaled beams via finite element nonlocal integral elasticity approach pp.1741-2986, 2018, https://doi.org/10.1177/1077546318783556
- A unified formulation for static behavior of nonlocal curved beams vol.59, pp.3, 2015, https://doi.org/10.12989/sem.2016.59.3.475
- Surface effects on vibration and buckling behavior of embedded nanoarches vol.64, pp.1, 2017, https://doi.org/10.12989/sem.2017.64.1.001
- Dynamic characteristics of curved inhomogeneous nonlocal porous beams in thermal environment vol.64, pp.1, 2015, https://doi.org/10.12989/sem.2017.64.1.121
- Wave dispersion characteristics of nonlocal strain gradient double-layered graphene sheets in hygro-thermal environments vol.65, pp.6, 2018, https://doi.org/10.12989/sem.2018.65.6.645
- Wave propagation analysis of smart strain gradient piezo-magneto-elastic nonlocal beams vol.66, pp.2, 2018, https://doi.org/10.12989/sem.2018.66.2.237
- A unified formulation for modeling of inhomogeneous nonlocal beams vol.66, pp.3, 2015, https://doi.org/10.12989/sem.2018.66.3.369
- Buckling analysis of nanoplate-type temperature-dependent heterogeneous materials vol.7, pp.1, 2015, https://doi.org/10.12989/anr.2019.7.1.051
- Nonlocal nonlinear analysis of nano-graphene sheets under compression using semi-Galerkin technique vol.7, pp.5, 2015, https://doi.org/10.12989/anr.2019.7.5.311
- Effect of nano glass cenosphere filler on hybrid composite eigenfrequency responses - An FEM approach and experimental verification vol.7, pp.6, 2015, https://doi.org/10.12989/anr.2019.7.6.419
- Experimental and numerical bending deflection of cenosphere filled hybrid (Glass/Cenosphere/Epoxy) composite vol.73, pp.6, 2015, https://doi.org/10.12989/sem.2020.73.6.715
- A comprehensive review on the modeling of smart piezoelectric nanostructures vol.74, pp.5, 2015, https://doi.org/10.12989/sem.2020.74.5.611
- Nonlinear deflection responses of layered composite structure using uncertain fuzzified elastic properties vol.35, pp.6, 2015, https://doi.org/10.12989/scs.2020.35.6.753
- On scale-dependent stability analysis of functionally graded magneto-electro-thermo-elastic cylindrical nanoshells vol.75, pp.6, 2015, https://doi.org/10.12989/sem.2020.75.6.659
- Wave propagation analysis of a rectangular sandwich composite plate with tunable magneto-rheological fluid core vol.27, pp.11, 2015, https://doi.org/10.1177/1077546320938189