DOI QR코드

DOI QR Code

A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory

  • Zemri, Amine (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Houari, Mohammed Sid Ahmed (Departement de Genie Civil, Universite de Mascara) ;
  • Bousahla, Abdelmoumen Anis (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Tounsi, Abdelouahed (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes)
  • Received : 2014.08.19
  • Accepted : 2015.02.21
  • Published : 2015.05.25

Abstract

This paper presents a nonlocal shear deformation beam theory for bending, buckling, and vibration of functionally graded (FG) nanobeams using the nonlocal differential constitutive relations of Eringen. The developed theory account for higher-order variation of transverse shear strain through the depth of the nanobeam, and satisfy the stress-free boundary conditions on the top and bottom surfaces of the nanobeam. A shear correction factor, therefore, is not required. In addition, this nonlocal nanobeam model incorporates the length scale parameter which can capture the small scale effect and it has strong similarities with Euler-Bernoulli beam model in some aspects such as equations of motion, boundary conditions, and stress resultant expressions. The material properties of the FG nanobeam are assumed to vary in the thickness direction. The equations of motion are derived from Hamilton's principle. Analytical solutions are presented for a simply supported FG nanobeam, and the obtained results compare well with those predicted by the nonlocal Timoshenko beam theory.

Keywords

Acknowledgement

Supported by : Algerian National Thematic Agency of Research in Science and Technology (ATRST), university of Sidi Bel Abbes (UDL SBA)

References

  1. Adda Bedia, W., Benzair, A., Semmah, A., Tounsi, A. and Mahmoud, S.R. (2015), "On the thermal buckling characteristics of armchair single-walled carbon nanotube embedded in an elastic medium based on nonlocal continuum elasticity", Brazil. J. Phys., 45(2), 225-233. https://doi.org/10.1007/s13538-015-0306-2
  2. Ait Amar Meziane, M., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
  3. Ait Yahia, S., Ait Atmane, H., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
  4. Amara, K., Tounsi, A., Mechab, I. and Adda Bedia, E.A. (2010), "Nonlocal elasticity effect on column buckling of multiwalled carbon nanotubes under temperature field", Appl. Math. Model., 34, 3933-3942. https://doi.org/10.1016/j.apm.2010.03.029
  5. Attia, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories", Steel Compos. Struct., 18(1), 187-212. https://doi.org/10.12989/scs.2015.18.1.187
  6. Bachir Bouiadjra, R., Adda Bedia, E.A. and Tounsi, A. (2013), "Nonlinear thermal buckling behavior of functionally graded plates using an efficient sinusoidal shear deformation theory", Struct. Eng. Mech., 48, 547-567. https://doi.org/10.12989/sem.2013.48.4.547
  7. Baghdadi, H., Tounsi, A., Zidour, M. and Benzair, A. (2014), "Thermal effect on vibration characteristics of armchair and zigzag single walled carbon nanotubes using nonlocal parabolic beam theory", Full. Nanotub. Carbon Nanostr., 23, 266-272.
  8. Bazant, Z.P. and Jirasek, M. (2002), "Nonlocal integral formulations of plasticity and damage: Survey of progress", J. Eng. Mech., 128, 1119-1149. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:11(1119)
  9. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos. Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  10. Belkorissat, I., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct. (Accepted)
  11. Benachour, A., Daouadji Tahar, H., Ait Atmane, H., Tounsi, A. and Meftah, S.A. (2011), "A four variable refined plate theory for free vibrations of functionally graded plates with arbitrary gradient", Compos. Part B, 42, 1386-1394. https://doi.org/10.1016/j.compositesb.2011.05.032
  12. Benguediab, S., Tounsi, A., Zidour, M. and Semmah, A. (2014), "Chirality and scale rffects on mechanical buckling properties of zigzag double-walled carbon nanotubes", Compos. Part B, 57, 21-24. https://doi.org/10.1016/j.compositesb.2013.08.020
  13. Benzair, A., Tounsi, A., Besseghier, A., Heireche, H., Moulay, N. and Boumia, L. (2008), "The thermal effect on vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory", J. Phys. D: Appl. Phys., 41, 225404. https://doi.org/10.1088/0022-3727/41/22/225404
  14. Berrabah, H.M., Tounsi, A., Semmah, A. and Adda Bedia, E.A. (2013), "Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nanobeams", Struct. Eng. Mech., 48(3), 351-365. https://doi.org/10.12989/sem.2013.48.3.351
  15. Bessaim, A., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Adda Bedia, E.A. (2013), "A new higherorder shear and normal deformation theory for the static and free vibration analysis of sandwich plates with functionally graded isotropic face sheets", J. Sandw. Struct. Mater., 15, 671-703. https://doi.org/10.1177/1099636213498888
  16. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  17. Boumia, L., Zidour, M., Benzair, A. and Tounsi, A. (2014), "A Timoshenko beam model for vibration analysis of chiral single-walled carbon nanotubes", Physica E, 59, 186-191. https://doi.org/10.1016/j.physe.2014.01.020
  18. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
  19. Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A., (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", Int. J. Comput. Meth., 11(6), 1350082. https://doi.org/10.1142/S0219876213500825
  20. El Meiche, N., Tounsi, A., Ziane, N., Mechab, I. and Adda Bedia, E.A. (2011), "A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate", Int. J. Mech. Sci., 53, 237-247. https://doi.org/10.1016/j.ijmecsci.2011.01.004
  21. Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2012), "Free vibration analysis of functionally graded sizedependent nanobeams", Appl. Math. Comput., 218, 7406-7420. https://doi.org/10.1016/j.amc.2011.12.090
  22. Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10, 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
  23. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54, 4703-4710. https://doi.org/10.1063/1.332803
  24. Fekrar, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2014), "A new five-unknown refined theory based on neutral surface position for bending analysis of exponential graded plates", Meccanica, 49, 795-810. https://doi.org/10.1007/s11012-013-9827-3
  25. Fu, Y., Du, H. and Zhang, S. (2003), "Functionally graded TiN/TiNi shape memory alloy films", Mater. Lett., 57, 2995-2999. https://doi.org/10.1016/S0167-577X(02)01419-2
  26. Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5- unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
  27. Hasanyan, D.J., Batra, R.C. and Harutyunyan, S. (2008), "Pull-In instabilities in functionally graded microthermoelectromechanical systems", J. Therm. Stress., 31, 1006-1021. https://doi.org/10.1080/01495730802250714
  28. Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Adda Bedia, E.A. (2014), "A new quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", ASCE J. Eng. Mech., 140, 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
  29. Heireche, H, Tounsi, A, Benzair, A, Maachou, M. and Adda Bedia, EA. (2008a), "Sound wave propagation in single-walled carbon nanotubes using nonlocal elasticity", Physica E., 40, 2791-2799. https://doi.org/10.1016/j.physe.2007.12.021
  30. Heireche, H., Tounsi, A. and Benzair, A. (2008b), "Scale effect on wave propagation of double-walled carbon nanotubes with initial axial loading", Nanotechnology, 19, 185703. https://doi.org/10.1088/0957-4484/19/18/185703
  31. Heireche, H., Tounsi, A., Benzair, A. and Mechab, I. (2008c), "Sound Wave Propagation in Single - Carbon Nanotubes with Initial Axial Stress", J. Appl. Phys., 104, 014301. https://doi.org/10.1063/1.2949274
  32. Houari, M.S.A., Tounsi, A. and Anwar Beg, O. (2013), "Thermoelastic bending analysis of functionally graded sandwich plates using a new higher order shear and normal deformation theory", Int. J. Mech. Sci., 76, 102-111. https://doi.org/10.1016/j.ijmecsci.2013.09.004
  33. Janghorban, M. and Zare, A. (2011), "Free vibration analysis of functionally graded carbon nanotubes with variable thickness by differential quadrature method", Physica E, 43, 1602-1604. https://doi.org/10.1016/j.physe.2011.05.002
  34. Khalfi, Y., Houari, M.S.A. and Tounsi, A. (2014), "A refined and simple shear deformation theory for thermal buckling of solar functionally graded plates on elastic foundation", Int. J. Comput. Meth., 11(5), 135007.
  35. Larbi Chaht, F., Kaci, A., Houari, M.S.A., Tounsi, A., Anwar Beg, O. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425
  36. Levinson, M. (1981), "A new rectangular beam theory", J. Sound Vib., 74, 81-87. https://doi.org/10.1016/0022-460X(81)90493-4
  37. Lu, C.F., Lim, C.W. and Chen, W.Q. (2009), "Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory", Int. J. Solid. Struct., 46, 1176-1185. https://doi.org/10.1016/j.ijsolstr.2008.10.012
  38. Ma, H.M., Gao, X.L. and Reddy, J.N. (2008), "A microstructure-dependent Timoshenko beam model based on a modified couple stress theory", J. Mech. Phys. Solid., 56, 3379-3391. https://doi.org/10.1016/j.jmps.2008.09.007
  39. Mahi, A., Adda Bedia, E.A. and Tounsi, A. (2014), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39(9), 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
  40. Mohammadi-Alasti, B., Rezazadeh, G., Borgheei, A.M., Minaei, S. and Habibifar, R. (2011), "On the mechanical behavior of a functionally graded micro-beam subjected to a thermal moment and nonlinear electrostatic pressure", Compos. Struct., 93, 1516-1525. https://doi.org/10.1016/j.compstruct.2010.11.013
  41. Nix, W.D. and Gao, H. (1989), "Indentation size effects in crystalline materials: a law for strain gradient plasticity", J. Mech. Phys. Solid., 46, 411-425.
  42. Ould Larbi, L., Kaci, A., Houari, M.S.A. and Tounsi, A. (2013), "An efficient shear deformation beam theory based on neutral surface position for bending and free vibration of functionally graded beams", Mech. Bas. Des. Struct. Mach., 41, 421-433. https://doi.org/10.1080/15397734.2013.763713
  43. Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nanotechnology", Int. J. Eng. Sci., 41, 305-312. https://doi.org/10.1016/S0020-7225(02)00210-0
  44. Pisano, A.A. and Fuschi, P. (2003), "Closed form solution for a nonlocal elastic bar in tension", Int. J. Solid. Struct., 40, 13-23. https://doi.org/10.1016/S0020-7683(02)00547-4
  45. Pisano, A.A., Sofi, A. and Fuschi, P. (2009a), "Finite element solutions for nonhomogeneous nonlocal elastic problems", Mech. Res. Commun., 36, 755-761. https://doi.org/10.1016/j.mechrescom.2009.06.003
  46. Pisano, A.A., Sofi, A. and Fuschi, P. (2009b), "Nonlocal integral elasticity: 2D finite element based solutions", Int. J. Solid. Struct., 46, 3836-3849. https://doi.org/10.1016/j.ijsolstr.2009.07.009
  47. Rahaeifard, M., Kahrobaiyan, M.H. and Ahmadian, M.T. (2009), "Sensitivity analysis of atomic force microscope cantilever made of functionally graded materials", DETC2009-86254, 3rd International conference on micro- and nanosystems (MNS3) 2009, San Diego, CA, USA.
  48. Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719
  49. Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45, 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
  50. Saidi, H., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. (2013), "Thermo-mechanical bending response with stretching effect of functionally graded sandwich plates using a novel shear deformation theory", Steel Compos. Struct., 15, 221-245. https://doi.org/10.12989/scs.2013.15.2.221
  51. Semmah, A., Tounsi, A., Zidour, M., Heireche, H. and Naceri, M. (2014), "Effect of chirality on critical buckling temperature of a zigzag single-walled carbon nanotubes using nonlocal continuum theory", Full. Nanotub. Carbon Nanostr., 23, 518-522.
  52. Sudak, L.J. (2003), "Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics", J. Appl. Phys., 94, 7281-7287. https://doi.org/10.1063/1.1625437
  53. Tounsi, A, Heireche, H, Berrabah, HM, Benzair, A. and Boumia, L. (2008), "Effect of small size on wave propagation in double-walled carbon nanotubes under temperature field", J. Appl. Phys., 104, 104301. https://doi.org/10.1063/1.3018330
  54. Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013a), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Tech., 24, 209-220. https://doi.org/10.1016/j.ast.2011.11.009
  55. Tounsi, A., Semmah, A. and Bousahla, A.A. (2013b), "Thermal buckling behavior of nanobeams using an efficient higher-order nonlocal beam theory", ASCE J. Nanomech. Micromech., 3, 37-42. https://doi.org/10.1061/(ASCE)NM.2153-5477.0000057
  56. Tounsi, A., Benguediab, S., Adda Bedia, E.A., Semmah, A. and Zidour, M. (2013c), "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes", Adv. Nano Res., 1(1), 1-11. https://doi.org/10.12989/anr.2013.1.1.001
  57. Tounsi, A., Benguediab, S., Houari, M.S.A. and Semmah, A. (2013d), "A new nonlocal beam theory with thickness stretching effect for nanobeams", Int. J. Nanosci., 12, 1350025. https://doi.org/10.1142/S0219581X13500257
  58. Tounsi, A., Al-Basyouni, K.S. and Mahmoud, S.R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct., 125, 621-630. https://doi.org/10.1016/j.compstruct.2014.12.070
  59. Wang, Q. (2005), "Wave propagation in carbon nanotubes via nonlocal continuum mechanics", J. Appl. Phys., 98, 124301. https://doi.org/10.1063/1.2141648
  60. Witvrouw, A. and Mehta, A. (2005), "The use of functionally graded Ploy-SiGe layers for MEMS applications", Mater. Sci. Forum, 492-493, 255-260.
  61. Zhang, J. and Fu, Y. (2012), "Pull-in analysis of electrically actuated viscoelastic microbeams based on a modified couple stress theory", Meccanica, 47, 1649-1658. https://doi.org/10.1007/s11012-012-9545-2
  62. Zidi, M., Tounsi, A., Houari, M.S.A., Adda Bedia, E.A. and Anwar Beg, O. (2014), "Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory" Aerosp. Sci. Tech., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001
  63. Zidour, M., Benrahou, K.H., Semmah, A., Naceri, M., Belhadj, H.A. and Bakhti, K. et al. (2012), "The thermal effect on vibration of zigzag single walled carbon nanotubes using nonlocal Timoshenko beam theory", Comput. Mater. Sci., 51, 252-260. https://doi.org/10.1016/j.commatsci.2011.07.021
  64. Zidour, M., Daouadji, T.H., Benrahou, K.H., Tounsi, A., Adda Bedia, E.A. and Hadji, L. (2014), "Buckling analysis of chiral single-walled carbon nanotubes by using the nonlocal Timoshenko beam theory", Mech. Compos. Mater., 50(1), 95-104. https://doi.org/10.1007/s11029-014-9396-0

Cited by

  1. Magnetic field effects on buckling behavior of smart size-dependent graded nanoscale beams vol.131, pp.7, 2016, https://doi.org/10.1140/epjp/i2016-16238-8
  2. Thermal environment effects on wave dispersion behavior of inhomogeneous strain gradient nanobeams based on higher order refined beam theory vol.39, pp.12, 2016, https://doi.org/10.1080/01495739.2016.1219243
  3. Dynamic modeling of a thermo–piezo-electrically actuated nanosize beam subjected to a magnetic field vol.122, pp.4, 2016, https://doi.org/10.1007/s00339-016-0001-3
  4. Thermal stability of functionally graded sandwich plates using a simple shear deformation theory vol.58, pp.3, 2016, https://doi.org/10.12989/sem.2016.58.3.397
  5. On nonlocal characteristics of curved inhomogeneous Euler–Bernoulli nanobeams under different temperature distributions vol.122, pp.10, 2016, https://doi.org/10.1007/s00339-016-0399-7
  6. Electromechanical buckling behavior of smart piezoelectrically actuated higher-order size-dependent graded nanoscale beams in thermal environment vol.7, pp.2, 2016, https://doi.org/10.1080/19475411.2016.1191556
  7. On flexural wave propagation responses of smart FG magneto-electro-elastic nanoplates via nonlocal strain gradient theory vol.162, 2017, https://doi.org/10.1016/j.compstruct.2016.11.058
  8. Coupled twist–bending static and dynamic behavior of a curved single-walled carbon nanotube based on nonlocal theory vol.23, pp.7, 2017, https://doi.org/10.1007/s00542-016-2933-0
  9. Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium vol.39, pp.3, 2017, https://doi.org/10.1007/s40430-016-0551-5
  10. Free vibration of anisotropic single-walled carbon nanotube based on couple stress theory for different chirality vol.36, pp.3, 2017, https://doi.org/10.1177/0263092317700153
  11. Buckling Analysis of Smart Size-Dependent Higher Order Magneto-Electro-Thermo-Elastic Functionally Graded Nanosize Beams vol.33, pp.01, 2017, https://doi.org/10.1017/jmech.2016.46
  12. Vibration analysis of viscoelastic inhomogeneous nanobeams incorporating surface and thermal effects vol.123, pp.1, 2017, https://doi.org/10.1007/s00339-016-0511-z
  13. Critical buckling load of chiral double-walled carbon nanotube using non-local theory elasticity vol.3, pp.4, 2015, https://doi.org/10.12989/anr.2015.3.4.193
  14. Vibration analysis of bonded double-FGM viscoelastic nanoplate systems based on a modified strain gradient theory incorporating surface effects vol.123, pp.3, 2017, https://doi.org/10.1007/s00339-017-0784-x
  15. A nonlocal quasi-3D trigonometric plate model for free vibration behaviour of micro/nanoscale plates vol.56, pp.2, 2015, https://doi.org/10.12989/sem.2015.56.2.223
  16. A new refined nonlocal beam theory accounting for effect of thickness stretching in nanoscale beams vol.4, pp.4, 2016, https://doi.org/10.12989/anr.2016.4.4.251
  17. Flexural Wave Propagation Analysis of Embedded S-FGM Nanobeams Under Longitudinal Magnetic Field Based on Nonlocal Strain Gradient Theory vol.42, pp.5, 2017, https://doi.org/10.1007/s13369-016-2266-4
  18. Application of nonlocal strain gradient theory and various shear deformation theories to nonlinear vibration analysis of sandwich nano-beam with FG-CNTRCs face-sheets in electro-thermal environment vol.123, pp.5, 2017, https://doi.org/10.1007/s00339-017-0922-5
  19. Electro-magnetic effects on nonlocal dynamic behavior of embedded piezoelectric nanoscale beams vol.28, pp.15, 2017, https://doi.org/10.1177/1045389X16682850
  20. Thermal buckling of embedded sandwich piezoelectric nanoplates with functionally graded core by a nonlocal second-order shear deformation theory 2019, https://doi.org/10.1177/0954406218756451
  21. Influence of the porosities on the free vibration of FGM beams vol.21, pp.3, 2015, https://doi.org/10.12989/was.2015.21.3.273
  22. Critical Buckling Load of Chiral Double-Walled Carbon Nanotubes Embedded in an Elastic Medium vol.53, pp.6, 2018, https://doi.org/10.1007/s11029-018-9708-x
  23. Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory vol.21, pp.6, 2016, https://doi.org/10.12989/scs.2016.21.6.1287
  24. An efficient shear deformation theory for wave propagation of functionally graded material plates vol.57, pp.5, 2016, https://doi.org/10.12989/sem.2016.57.5.837
  25. Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory vol.159, 2017, https://doi.org/10.1016/j.compstruct.2016.09.092
  26. Buckling analysis of piezoelectrically actuated smart nanoscale plates subjected to magnetic field vol.28, pp.11, 2017, https://doi.org/10.1177/1045389X16672569
  27. A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method vol.289, 2016, https://doi.org/10.1016/j.amc.2016.05.034
  28. An exact solution for buckling analysis of embedded piezo-electro-magnetically actuated nanoscale beams vol.4, pp.2, 2016, https://doi.org/10.12989/anr.2016.4.2.065
  29. Wave propagation analysis of size-dependent rotating inhomogeneous nanobeams based on nonlocal elasticity theory 2017, https://doi.org/10.1177/1077546317711537
  30. Free vibration investigation of nano mass sensor using differential transformation method vol.123, pp.3, 2017, https://doi.org/10.1007/s00339-017-0796-6
  31. Effects of rotary inertia shear deformation and non-homogeneity on frequencies of beam vol.55, pp.4, 2015, https://doi.org/10.12989/sem.2015.55.4.871
  32. Through-the-length temperature distribution effects on thermal vibration analysis of nonlocal strain-gradient axially graded nanobeams subjected to nonuniform magnetic field vol.40, pp.5, 2017, https://doi.org/10.1080/01495739.2016.1254076
  33. A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation vol.20, pp.2, 2016, https://doi.org/10.12989/scs.2016.20.2.227
  34. Thermal effects on nonlocal vibrational characteristics of nanobeams with non-ideal boundary conditions vol.18, pp.6, 2016, https://doi.org/10.12989/sss.2016.18.6.1087
  35. Thermal post-buckling behavior of imperfect temperature-dependent sandwich FGM plates resting on Pasternak elastic foundation vol.22, pp.1, 2016, https://doi.org/10.12989/scs.2016.22.1.091
  36. Hygrothermal buckling analysis of magnetically actuated embedded higher order functionally graded nanoscale beams considering the neutral surface position vol.39, pp.10, 2016, https://doi.org/10.1080/01495739.2016.1215726
  37. Thermo-mechanical vibration of rotating axially functionally graded nonlocal Timoshenko beam vol.123, pp.1, 2017, https://doi.org/10.1007/s00339-016-0712-5
  38. Longitudinal varying elastic foundation effects on vibration behavior of axially graded nanobeams via nonlocal strain gradient elasticity theory 2017, https://doi.org/10.1080/15376494.2017.1329467
  39. A review of continuum mechanics models for size-dependent analysis of beams and plates vol.177, 2017, https://doi.org/10.1016/j.compstruct.2017.06.040
  40. A new nonlocal hyperbolic shear deformation theory for nanobeams embedded in an elastic medium vol.55, pp.4, 2015, https://doi.org/10.12989/sem.2015.55.4.743
  41. Thermo-mechanical post-buckling behavior of thick functionally graded plates resting on elastic foundations vol.56, pp.1, 2015, https://doi.org/10.12989/sem.2015.56.1.085
  42. Effect of three-parameter viscoelastic medium on vibration behavior of temperature-dependent non-homogeneous viscoelastic nanobeams in a hygro-thermal environment vol.25, pp.5, 2018, https://doi.org/10.1080/15376494.2016.1255831
  43. A unified formulation for static behavior of nonlocal curved beams vol.59, pp.3, 2016, https://doi.org/10.12989/sem.2016.59.3.475
  44. Analytical modeling of dynamic behavior of piezo-thermo-electrically affected sigmoid and power-law graded nanoscale beams vol.122, pp.9, 2016, https://doi.org/10.1007/s00339-016-0273-7
  45. Nonlinear electroelastic vibration analysis of NEMS consisting of double-viscoelastic nanoplates vol.122, pp.10, 2016, https://doi.org/10.1007/s00339-016-0452-6
  46. Nonlocal strain gradient theory calibration using molecular dynamics simulation based on small scale vibration of nanotubes vol.514, 2017, https://doi.org/10.1016/j.physb.2017.03.030
  47. Nonlocal thermo-elastic wave propagation in temperature-dependent embedded small-scaled nonhomogeneous beams vol.131, pp.11, 2016, https://doi.org/10.1140/epjp/i2016-16383-0
  48. A simple hyperbolic shear deformation theory for vibration analysis of thick functionally graded rectangular plates resting on elastic foundations vol.11, pp.2, 2016, https://doi.org/10.12989/gae.2016.11.2.289
  49. Nonlinear analysis of size-dependent and material-dependent nonlocal CNTs vol.153, 2016, https://doi.org/10.1016/j.compstruct.2016.07.013
  50. Thermo-mechanical analysis of FG nanobeam with attached tip mass: an exact solution vol.122, pp.12, 2016, https://doi.org/10.1007/s00339-016-0542-5
  51. Buckling analysis of nonlocal strain gradient axially functionally graded nanobeams resting on variable elastic medium 2018, https://doi.org/10.1177/0954406217713518
  52. Twisting statics of functionally graded nanotubes using Eringen’s nonlocal integral model vol.178, 2017, https://doi.org/10.1016/j.compstruct.2017.06.067
  53. Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstructure-dependent strain gradient effects vol.120, 2017, https://doi.org/10.1016/j.ijmecsci.2016.11.025
  54. Free vibration analysis of chiral double-walled carbon nanotube using non-local elasticity theory vol.4, pp.1, 2016, https://doi.org/10.12989/anr.2016.4.1.031
  55. Wave propagation analysis of quasi-3D FG nanobeams in thermal environment based on nonlocal strain gradient theory vol.122, pp.9, 2016, https://doi.org/10.1007/s00339-016-0368-1
  56. Size-dependent nonlinear vibration of beam-type porous materials with an initial geometrical curvature vol.184, 2018, https://doi.org/10.1016/j.compstruct.2017.10.052
  57. On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams vol.19, pp.5, 2015, https://doi.org/10.12989/scs.2015.19.5.1259
  58. Magnetic field effects on nonlocal wave dispersion characteristics of size-dependent nanobeams vol.123, pp.1, 2017, https://doi.org/10.1007/s00339-016-0646-y
  59. Dynamic modeling of smart shear-deformable heterogeneous piezoelectric nanobeams resting on Winkler–Pasternak foundation vol.122, pp.11, 2016, https://doi.org/10.1007/s00339-016-0466-0
  60. Bending analysis of FGM plates using a sinusoidal shear deformation theory vol.23, pp.6, 2016, https://doi.org/10.12989/was.2016.23.6.543
  61. Magnetic field effects on dynamic behavior of inhomogeneous thermo-piezo-electrically actuated nanoplates vol.39, pp.6, 2017, https://doi.org/10.1007/s40430-016-0646-z
  62. Bending, buckling and vibration analyses of MSGT microcomposite circular-annular sandwich plate under hydro-thermo-magneto-mechanical loadings using DQM 2017, https://doi.org/10.1080/19475411.2017.1377312
  63. A general bi-Helmholtz nonlocal strain-gradient elasticity for wave propagation in nanoporous graded double-nanobeam systems on elastic substrate vol.168, 2017, https://doi.org/10.1016/j.compstruct.2017.02.090
  64. Vibration of two-dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams vol.322, 2017, https://doi.org/10.1016/j.cma.2017.05.007
  65. Effect of porosity on vibrational characteristics of non-homogeneous plates using hyperbolic shear deformation theory vol.22, pp.4, 2016, https://doi.org/10.12989/was.2016.22.4.429
  66. Vibration analysis of embedded biaxially loaded magneto-electrically actuated inhomogeneous nanoscale plates 2017, https://doi.org/10.1177/1077546317708105
  67. Nonlinear atomic vibrations and structural phase transitions in strained carbon chains vol.138, 2017, https://doi.org/10.1016/j.commatsci.2017.07.004
  68. Analysis of buckling response of functionally graded sandwich plates using a refined shear deformation theory vol.22, pp.3, 2016, https://doi.org/10.12989/was.2016.22.3.291
  69. Nonlocal vibration analysis of FG nano beams with different boundary conditions vol.4, pp.2, 2016, https://doi.org/10.12989/anr.2016.4.2.085
  70. Influence of thermal and surface effects on vibration behavior of nonlocal rotating Timoshenko nanobeam vol.122, pp.7, 2016, https://doi.org/10.1007/s00339-016-0196-3
  71. Dynamic characteristics of temperature-dependent viscoelastic FG nanobeams subjected to 2D-magnetic field under periodic loading vol.123, pp.4, 2017, https://doi.org/10.1007/s00339-017-0829-1
  72. Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept vol.20, pp.5, 2016, https://doi.org/10.12989/scs.2016.20.5.963
  73. Wave dispersion characteristics of axially loaded magneto-electro-elastic nanobeams vol.122, pp.11, 2016, https://doi.org/10.1007/s00339-016-0465-1
  74. Mechanical analysis of functionally graded graphene oxide-reinforced composite beams based on the first-order shear deformation theory pp.1537-6532, 2020, https://doi.org/10.1080/15376494.2018.1444216
  75. Temperature and Strain Rate Dependent Mechanical Properties of a Square Nickel Plate with Different Shaped Central Cracks: A Molecular Dynamics Study vol.55, pp.1661-9897, 2018, https://doi.org/10.4028/www.scientific.net/JNanoR.55.32
  76. Buckling Analysis of Orthotropic Nanoscale Plates Resting on Elastic Foundations vol.55, pp.1661-9897, 2018, https://doi.org/10.4028/www.scientific.net/JNanoR.55.42
  77. On modeling of wave propagation in a thermally affected GNP-reinforced imperfect nanocomposite shell pp.1435-5663, 2019, https://doi.org/10.1007/s00366-018-0669-4
  78. Post-buckling analysis of piezo-magnetic nanobeams with geometrical imperfection and different piezoelectric contents pp.1432-1858, 2018, https://doi.org/10.1007/s00542-018-4241-3
  79. Nonlocal Thermal and Mechanical Buckling of Nonlinear Orthotropic Viscoelastic Nanoplates Embedded in a Visco-Pasternak Medium vol.10, pp.08, 2018, https://doi.org/10.1142/S1758825118500862
  80. Vibration Analysis of Nano Beam Using Differential Transform Method Including Thermal Effect vol.54, pp.1661-9897, 2018, https://doi.org/10.4028/www.scientific.net/JNanoR.54.1
  81. Stabilities and electronic properties of nanowires made of single atomic sulfur chains encapsulated in zigzag carbon nanotubes vol.29, pp.41, 2018, https://doi.org/10.1088/1361-6528/aad67a
  82. Axial magnetic field effects on dynamic characteristics of embedded multiphase nanocrystalline nanobeams vol.24, pp.8, 2018, https://doi.org/10.1007/s00542-018-3771-z
  83. Dynamic stability analysis of microcomposite annular sandwich plate with carbon nanotube reinforced composite facesheets based on modified strain gradient theory pp.1530-7972, 2018, https://doi.org/10.1177/1099636218782770
  84. Instability of functionally graded micro-beams via micro-structure-dependent beam theory vol.39, pp.7, 2018, https://doi.org/10.1007/s10483-018-2343-8
  85. Smart electrical and magnetic stability analysis of exponentially graded shear deformable three-layered nanoplate based on nonlocal piezo-magneto-elasticity theory pp.1530-7972, 2018, https://doi.org/10.1177/1099636218760667
  86. Thermal and Small-Scale Effects on Vibration of Embedded Armchair Single-Walled Carbon Nanotubes vol.51, pp.1661-9897, 2018, https://doi.org/10.4028/www.scientific.net/JNanoR.51.24
  87. Nonlocal strain gradient theory for damping vibration analysis of viscoelastic inhomogeneous nano-scale beams embedded in visco-Pasternak foundation vol.24, pp.10, 2018, https://doi.org/10.1177/1077546316678511
  88. A novel approach for nonlinear bending response of macro- and nanoplates with irregular variable thickness under nonuniform loading in thermal environment pp.1539-7742, 2019, https://doi.org/10.1080/15397734.2018.1557529
  89. Influence of flexoelectric, small-scale, surface and residual stress on the nonlinear vibration of sigmoid, exponential and power-law FG Timoshenko nano-beams vol.38, pp.1, 2019, https://doi.org/10.1177/1461348418815410
  90. Modal participation of fixed–fixed single-walled carbon nanotube with vacancies pp.2008-6695, 2019, https://doi.org/10.1007/s40091-019-0222-8
  91. A novel quasi-3D hyperbolic shear deformation theory for functionally graded thick rectangular plates on elastic foundation vol.12, pp.1, 2015, https://doi.org/10.12989/gae.2017.12.1.009
  92. A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams vol.19, pp.2, 2017, https://doi.org/10.12989/sss.2017.19.2.115
  93. Bending and stability analysis of size-dependent compositionally graded Timoshenko nanobeams with porosities vol.6, pp.1, 2017, https://doi.org/10.12989/amr.2017.6.1.045
  94. Wave propagation in functionally graded beams using various higher-order shear deformation beams theories vol.62, pp.2, 2015, https://doi.org/10.12989/sem.2017.62.2.143
  95. Analysis of functionally graded plates using a sinusoidal shear deformation theory vol.19, pp.4, 2017, https://doi.org/10.12989/sss.2017.19.4.441
  96. A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams vol.62, pp.6, 2017, https://doi.org/10.12989/sem.2017.62.6.695
  97. Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory vol.19, pp.6, 2015, https://doi.org/10.12989/sss.2017.19.6.601
  98. Hygro-thermo-mechanical vibration and buckling of exponentially graded nanoplates resting on elastic foundations via nonlocal elasticity theory vol.63, pp.3, 2015, https://doi.org/10.12989/sem.2017.63.3.401
  99. Dynamic bending response of SWCNT reinforced composite plates subjected to hygro-thermo-mechanical loading vol.20, pp.2, 2015, https://doi.org/10.12989/cac.2017.20.2.229
  100. A simple analytical approach for thermal buckling of thick functionally graded sandwich plates vol.63, pp.5, 2015, https://doi.org/10.12989/sem.2017.63.5.585
  101. Vibration analysis of FG nanobeams based on third-order shear deformation theory under various boundary conditions vol.25, pp.1, 2017, https://doi.org/10.12989/scs.2017.25.1.067
  102. An efficient shear deformation theory for wave propagation in functionally graded material beams with porosities vol.13, pp.3, 2015, https://doi.org/10.12989/eas.2017.13.3.255
  103. Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory vol.20, pp.3, 2015, https://doi.org/10.12989/sss.2017.20.3.369
  104. A new and simple HSDT for thermal stability analysis of FG sandwich plates vol.25, pp.2, 2015, https://doi.org/10.12989/scs.2017.25.2.157
  105. Surface effects on vibration and buckling behavior of embedded nanoarches vol.64, pp.1, 2017, https://doi.org/10.12989/sem.2017.64.1.001
  106. Dynamic characteristics of curved inhomogeneous nonlocal porous beams in thermal environment vol.64, pp.1, 2015, https://doi.org/10.12989/sem.2017.64.1.121
  107. A novel simple two-unknown hyperbolic shear deformation theory for functionally graded beams vol.64, pp.2, 2015, https://doi.org/10.12989/sem.2017.64.2.145
  108. Free vibration of functionally graded plates resting on elastic foundations based on quasi-3D hybrid-type higher order shear deformation theory vol.20, pp.4, 2017, https://doi.org/10.12989/sss.2017.20.4.509
  109. An analytical solution for bending and vibration responses of functionally graded beams with porosities vol.25, pp.4, 2015, https://doi.org/10.12989/was.2017.25.4.329
  110. An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates vol.25, pp.3, 2015, https://doi.org/10.12989/scs.2017.25.3.257
  111. A novel and simple higher order shear deformation theory for stability and vibration of functionally graded sandwich plate vol.25, pp.4, 2017, https://doi.org/10.12989/scs.2017.25.4.389
  112. A simple quasi-3D sinusoidal shear deformation theory with stretching effect for carbon nanotube-reinforced composite beams resting on elastic foundation vol.13, pp.5, 2015, https://doi.org/10.12989/eas.2017.13.5.509
  113. A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates vol.64, pp.4, 2015, https://doi.org/10.12989/sem.2017.64.4.391
  114. Vibration analysis of micro composite thin beam based on modified couple stress vol.64, pp.4, 2017, https://doi.org/10.12989/sem.2017.64.4.403
  115. An original HSDT for free vibration analysis of functionally graded plates vol.25, pp.6, 2015, https://doi.org/10.12989/scs.2017.25.6.735
  116. Vibration analysis of thick orthotropic plates using quasi 3D sinusoidal shear deformation theory vol.16, pp.2, 2015, https://doi.org/10.12989/gae.2018.16.2.141
  117. A nonlocal strain gradient theory for nonlinear free and forced vibration of embedded thick FG double layered nanoplates vol.68, pp.1, 2018, https://doi.org/10.12989/sem.2018.68.1.103
  118. Post-buckling analysis of shear-deformable composite beams using a novel simple two-unknown beam theory vol.65, pp.5, 2015, https://doi.org/10.12989/sem.2018.65.5.621
  119. Thermal stability analysis of temperature dependent inhomogeneous size-dependent nano-scale beams vol.7, pp.1, 2015, https://doi.org/10.12989/amr.2018.7.1.001
  120. Post-buckling responses of a laminated composite beam vol.26, pp.6, 2015, https://doi.org/10.12989/scs.2018.26.6.733
  121. Wave dispersion characteristics of nonlocal strain gradient double-layered graphene sheets in hygro-thermal environments vol.65, pp.6, 2018, https://doi.org/10.12989/sem.2018.65.6.645
  122. A novel four variable refined plate theory for wave propagation in functionally graded material plates vol.27, pp.1, 2018, https://doi.org/10.12989/scs.2018.27.1.109
  123. Improved HSDT accounting for effect of thickness stretching in advanced composite plates vol.66, pp.1, 2015, https://doi.org/10.12989/sem.2018.66.1.061
  124. Vibration and instability analysis of pipes reinforced by SiO2 nanoparticles considering agglomeration effects vol.21, pp.4, 2018, https://doi.org/10.12989/cac.2018.21.4.431
  125. Three dimensional dynamic response of functionally graded nanoplates under a moving load vol.66, pp.2, 2015, https://doi.org/10.12989/sem.2018.66.2.249
  126. A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory vol.21, pp.4, 2015, https://doi.org/10.12989/sss.2018.21.4.397
  127. Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates vol.14, pp.6, 2015, https://doi.org/10.12989/gae.2018.14.6.519
  128. Bending of FGM rectangular plates resting on non-uniform elastic foundations in thermal environment using an accurate theory vol.27, pp.3, 2018, https://doi.org/10.12989/scs.2018.27.3.311
  129. Size dependent bending analysis of micro/nano sandwich structures based on a nonlocal high order theory vol.27, pp.3, 2018, https://doi.org/10.12989/scs.2018.27.3.371
  130. Free vibration of FGM plates with porosity by a shear deformation theory with four variables vol.66, pp.3, 2015, https://doi.org/10.12989/sem.2018.66.3.353
  131. A unified formulation for modeling of inhomogeneous nonlocal beams vol.66, pp.3, 2015, https://doi.org/10.12989/sem.2018.66.3.369
  132. Free vibration and buckling analysis of orthotropic plates using a new two variable refined plate theory vol.15, pp.1, 2015, https://doi.org/10.12989/gae.2018.15.1.711
  133. Vibration and instability of nanocomposite pipes conveying fluid mixed by nanoparticles resting on viscoelastic foundation vol.21, pp.5, 2018, https://doi.org/10.12989/cac.2018.21.5.569
  134. Mathematical modeling of smart nanoparticles-reinforced concrete foundations: Vibration analysis vol.27, pp.4, 2015, https://doi.org/10.12989/scs.2018.27.4.465
  135. Nonlocal free vibration analysis of a doubly curved piezoelectric nano shell vol.27, pp.4, 2018, https://doi.org/10.12989/scs.2018.27.4.479
  136. Three dimensional finite elements modeling of FGM plate bending using UMAT vol.66, pp.4, 2018, https://doi.org/10.12989/sem.2018.66.4.487
  137. A novel four-unknown quasi-3D shear deformation theory for functionally graded plates vol.27, pp.5, 2015, https://doi.org/10.12989/scs.2018.27.5.599
  138. A new nonlocal HSDT for analysis of stability of single layer graphene sheet vol.6, pp.2, 2015, https://doi.org/10.12989/anr.2018.6.2.147
  139. Mechanical buckling analysis of hybrid laminated composite plates under different boundary conditions vol.66, pp.6, 2018, https://doi.org/10.12989/sem.2018.66.6.761
  140. A new quasi-3D higher shear deformation theory for vibration of functionally graded carbon nanotube-reinforced composite beams resting on elastic foundation vol.66, pp.6, 2018, https://doi.org/10.12989/sem.2018.66.6.771
  141. Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter vol.28, pp.1, 2015, https://doi.org/10.12989/scs.2018.28.1.013
  142. Dynamic stability of nanocomposite Mindlin pipes conveying pulsating fluid flow subjected to magnetic field vol.67, pp.1, 2015, https://doi.org/10.12989/sem.2018.67.1.021
  143. Technical and economical assessment of applying silica nanoparticles for construction of concrete structures vol.22, pp.1, 2018, https://doi.org/10.12989/cac.2018.22.1.117
  144. Analytical wave dispersion modeling in advanced piezoelectric double-layered nanobeam systems vol.67, pp.2, 2015, https://doi.org/10.12989/sem.2018.67.2.175
  145. Size-dependent free vibration and dynamic analyses of a sandwich microbeam based on higher-order sinusoidal shear deformation theory and strain gradient theory vol.22, pp.1, 2015, https://doi.org/10.12989/sss.2018.22.1.027
  146. Forced vibration response in nanocomposite cylindrical shells - Based on strain gradient beam theory vol.28, pp.3, 2015, https://doi.org/10.12989/scs.2018.28.3.381
  147. Single variable shear deformation model for bending analysis of thick beams vol.67, pp.3, 2015, https://doi.org/10.12989/sem.2018.67.3.291
  148. Numerical study for vibration response of concrete beams reinforced by nanoparticles vol.67, pp.3, 2018, https://doi.org/10.12989/sem.2018.67.3.311
  149. Analysis of boundary conditions effects on vibration of nanobeam in a polymeric matrix vol.67, pp.5, 2015, https://doi.org/10.12989/sem.2018.67.5.517
  150. Effect of homogenization models on stress analysis of functionally graded plates vol.67, pp.5, 2018, https://doi.org/10.12989/sem.2018.67.5.527
  151. Bending of a cracked functionally graded nanobeam vol.6, pp.3, 2015, https://doi.org/10.12989/anr.2018.6.3.219
  152. Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory vol.6, pp.3, 2018, https://doi.org/10.12989/anr.2018.6.3.279
  153. Seismic analysis of AL2O3 nanoparticles-reinforced concrete plates based on sinusoidal shear deformation theory vol.15, pp.3, 2015, https://doi.org/10.12989/eas.2018.15.3.285
  154. Nonlinear finite element solutions of thermoelastic flexural strength and stress values of temperature dependent graded CNT-reinforced sandwich shallow shell structure vol.67, pp.6, 2018, https://doi.org/10.12989/sem.2018.67.6.565
  155. A novel quasi-3D hyperbolic shear deformation theory for vibration analysis of simply supported functionally graded plates vol.22, pp.3, 2015, https://doi.org/10.12989/sss.2018.22.3.303
  156. An analytical solution for free vibration of functionally graded beam using a simple first-order shear deformation theory vol.27, pp.4, 2015, https://doi.org/10.12989/was.2018.27.4.247
  157. A refined quasi-3D hybrid-type higher order shear deformation theory for bending and Free vibration analysis of advanced composites beams vol.27, pp.4, 2015, https://doi.org/10.12989/was.2018.27.4.269
  158. Size-dependent forced vibration response of embedded micro cylindrical shells reinforced with agglomerated CNTs using strain gradient theory vol.22, pp.5, 2015, https://doi.org/10.12989/sss.2018.22.5.527
  159. Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation vol.27, pp.5, 2018, https://doi.org/10.12989/was.2018.27.5.311
  160. A layerwise theory for buckling analysis of truncated conical shells reinforced by CNTs and carbon fibers integrated with piezoelectric layers in hygrothermal environment vol.6, pp.4, 2018, https://doi.org/10.12989/anr.2018.6.4.299
  161. Critical buckling loads of carbon nanotube embedded in Kerr's medium vol.6, pp.4, 2015, https://doi.org/10.12989/anr.2018.6.4.339
  162. A novel hyperbolic shear deformation theory for the mechanical buckling analysis of advanced composite plates resting on elastic foundations vol.30, pp.1, 2015, https://doi.org/10.12989/scs.2019.30.1.013
  163. Small-scale effect on the forced vibration of a nano beam embedded an elastic medium using nonlocal elasticity theory vol.6, pp.1, 2019, https://doi.org/10.12989/aas.2019.6.1.001
  164. Nonlinear vibration of functionally graded nano-tubes using nonlocal strain gradient theory and a two-steps perturbation method vol.69, pp.2, 2015, https://doi.org/10.12989/sem.2019.69.2.205
  165. Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory vol.28, pp.1, 2015, https://doi.org/10.12989/was.2019.28.1.019
  166. Dynamic and wave propagation investigation of FGM plates with porosities using a four variable plate theory vol.28, pp.1, 2015, https://doi.org/10.12989/was.2019.28.1.049
  167. Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections vol.17, pp.2, 2019, https://doi.org/10.12989/gae.2019.17.2.175
  168. A novel refined shear deformation theory for the buckling analysis of thick isotropic plates vol.69, pp.3, 2019, https://doi.org/10.12989/sem.2019.69.3.335
  169. Dynamic analysis of concrete column reinforced with Sio2 nanoparticles subjected to blast load vol.7, pp.1, 2015, https://doi.org/10.12989/acc.2019.7.1.051
  170. Effect of the micromechanical models on the bending of FGM beam using a new hyperbolic shear deformation theory vol.16, pp.2, 2019, https://doi.org/10.12989/eas.2019.16.2.177
  171. Application of nonlocal elasticity theory on the wave propagation of flexoelectric functionally graded (FG) timoshenko nano-beams considering surface effects and residual surface stress vol.23, pp.2, 2015, https://doi.org/10.12989/sss.2019.23.2.141
  172. Application of the nonlocal strain gradient elasticity on the wave dispersion behaviors of inhomogeneous nanosize beams vol.134, pp.3, 2015, https://doi.org/10.1140/epjp/i2019-12464-x
  173. Vibration response and wave propagation in FG plates resting on elastic foundations using HSDT vol.69, pp.5, 2015, https://doi.org/10.12989/sem.2019.69.5.511
  174. Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT vol.7, pp.2, 2015, https://doi.org/10.12989/anr.2019.7.2.089
  175. Free vibration of an annular sandwich plate with CNTRC facesheets and FG porous cores using Ritz method vol.7, pp.2, 2015, https://doi.org/10.12989/anr.2019.7.2.109
  176. Vibration analysis of different material distributions of functionally graded microbeam vol.69, pp.6, 2015, https://doi.org/10.12989/sem.2019.69.6.637
  177. Static and Dynamic Behavior of Nanotubes-Reinforced Sandwich Plates Using (FSDT) vol.57, pp.None, 2015, https://doi.org/10.4028/www.scientific.net/jnanor.57.117
  178. Postbuckling of Curved Carbon Nanotubes Using Energy Equivalent Model vol.57, pp.None, 2015, https://doi.org/10.4028/www.scientific.net/jnanor.57.136
  179. Participation Factor and Vibration of Carbon Nanotube with Vacancies vol.57, pp.None, 2015, https://doi.org/10.4028/www.scientific.net/jnanor.57.158
  180. Vibration analysis of graphene oxide powder-/carbon fiber-reinforced multi-scale porous nanocomposite beams: A finite-element study vol.134, pp.5, 2015, https://doi.org/10.1140/epjp/i2019-12594-1
  181. Theoretical analysis of chirality and scale effects on critical buckling load of zigzag triple walled carbon nanotubes under axial compression embedded in polymeric matrix vol.70, pp.3, 2019, https://doi.org/10.12989/sem.2019.70.3.269
  182. A simple HSDT for bending, buckling and dynamic behavior of laminated composite plates vol.70, pp.3, 2019, https://doi.org/10.12989/sem.2019.70.3.325
  183. Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT vol.7, pp.3, 2015, https://doi.org/10.12989/anr.2019.7.3.191
  184. Influence of shear preload on wave propagation in small-scale plates with nanofibers vol.70, pp.4, 2015, https://doi.org/10.12989/sem.2019.70.4.407
  185. The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate vol.18, pp.2, 2015, https://doi.org/10.12989/gae.2019.18.2.161
  186. A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation vol.31, pp.5, 2015, https://doi.org/10.12989/scs.2019.31.5.503
  187. Finite element formulation and vibration of nonlocal refined metal foam beams with symmetric and non-symmetric porosities vol.6, pp.2, 2015, https://doi.org/10.12989/smm.2019.6.2.147
  188. Conformable solution of fractional vibration problem of plate subjected to in-plane loads vol.28, pp.6, 2019, https://doi.org/10.12989/was.2019.28.6.347
  189. A novel meshless particle method for nonlocal analysis of two-directional functionally graded nanobeams vol.41, pp.7, 2015, https://doi.org/10.1007/s40430-019-1799-3
  190. Stability analysis of embedded graphene platelets reinforced composite plates in thermal environment vol.134, pp.7, 2019, https://doi.org/10.1140/epjp/i2019-12581-6
  191. Vibration characteristics of zigzag and chiral functionally graded material rotating carbon nanotubes sandwich with ring supports vol.233, pp.16, 2015, https://doi.org/10.1177/0954406219855095
  192. Study on shear force distribution in structural design of BRBF structure with high β value vol.193, pp.None, 2015, https://doi.org/10.1016/j.engstruct.2019.05.017
  193. Analyzing large-amplitude vibration of nonlocal beams made of different piezo-electric materials in thermal environment vol.8, pp.3, 2019, https://doi.org/10.12989/amr.2019.8.3.237
  194. Vibration analysis of nonlocal porous nanobeams made of functionally graded material vol.7, pp.5, 2019, https://doi.org/10.12989/anr.2019.7.5.351
  195. Static analysis of monoclinic plates via a three-dimensional model using differential quadrature method vol.72, pp.1, 2019, https://doi.org/10.12989/sem.2019.72.1.131
  196. Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT vol.24, pp.4, 2015, https://doi.org/10.12989/cac.2019.24.4.347
  197. A Non-Linear Spring Model for Predicting Modal Behavior of Oscillators Built from Double Walled Carbon Nanotubes vol.60, pp.None, 2015, https://doi.org/10.4028/www.scientific.net/jnanor.60.21
  198. Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity vol.7, pp.6, 2015, https://doi.org/10.12989/anr.2019.7.6.431
  199. The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory vol.7, pp.6, 2015, https://doi.org/10.12989/anr.2019.7.6.443
  200. Dynamic modeling of a multi-scale sandwich composite panel containing flexible core and MR smart layer vol.134, pp.12, 2015, https://doi.org/10.1140/epjp/i2019-12662-6
  201. A new higher-order shear and normal deformation theory for the buckling analysis of new type of FGM sandwich plates vol.72, pp.5, 2019, https://doi.org/10.12989/sem.2019.72.5.653
  202. Flexoelectric effects on dynamic response characteristics of nonlocal piezoelectric material beam vol.8, pp.4, 2015, https://doi.org/10.12989/amr.2019.8.4.259
  203. On the modeling of dynamic behavior of composite plates using a simple nth-HSDT vol.29, pp.6, 2015, https://doi.org/10.12989/was.2019.29.6.371
  204. Finite element forced vibration analysis of refined shear deformable nanocomposite graphene platelet-reinforced beams vol.42, pp.1, 2015, https://doi.org/10.1007/s40430-019-2118-8
  205. Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle vol.8, pp.1, 2020, https://doi.org/10.12989/anr.2020.8.1.037
  206. On transient hygrothermal vibration of embedded viscoelastic flexoelectric/piezoelectric nanobeams under magnetic loading vol.8, pp.1, 2015, https://doi.org/10.12989/anr.2020.8.1.049
  207. Transfer matrix formulations and single variable shear deformation theory for crack detection in beam-like structures vol.73, pp.2, 2020, https://doi.org/10.12989/sem.2020.73.2.109
  208. Free vibration analysis of FG nanoplate with poriferous imperfection in hygrothermal environment vol.73, pp.2, 2020, https://doi.org/10.12989/sem.2020.73.2.191
  209. Free vibration analysis of sandwich FGM shells using isogeometric B-spline finite strip method vol.34, pp.3, 2020, https://doi.org/10.12989/scs.2020.34.3.361
  210. Nonlocal vibration of DWCNTs based on Flügge shell model using wave propagation approach vol.34, pp.4, 2020, https://doi.org/10.12989/scs.2020.34.4.599
  211. A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates vol.25, pp.2, 2020, https://doi.org/10.12989/sss.2020.25.2.197
  212. Transient response of porous inhomogeneous nanobeams due to various impulsive loads based on nonlocal strain gradient elasticity vol.16, pp.1, 2015, https://doi.org/10.1007/s10999-019-09452-2
  213. A numerical method for dynamic characteristics of nonlocal porous metal-ceramic plates under periodic dynamic loads vol.7, pp.1, 2020, https://doi.org/10.12989/smm.2020.7.1.027
  214. A refined HSDT for bending and dynamic analysis of FGM plates vol.74, pp.1, 2020, https://doi.org/10.12989/sem.2020.74.1.105
  215. Analysis of post-buckling of higher-order graphene oxide reinforced concrete plates with geometrical imperfection vol.9, pp.4, 2015, https://doi.org/10.12989/acc.2020.9.4.397
  216. Finite element based modeling and thermal dynamic analysis of functionally graded graphene reinforced beams vol.5, pp.2, 2015, https://doi.org/10.12989/acd.2020.5.2.177
  217. Bending analysis of magneto-electro piezoelectric nanobeams system under hygro-thermal loading vol.8, pp.3, 2015, https://doi.org/10.12989/anr.2020.8.3.203
  218. Buckling and free vibration analyses of nanobeams with surface effects via various higher-order shear deformation theories vol.74, pp.2, 2020, https://doi.org/10.12989/sem.2020.74.2.175
  219. Thermal flexural analysis of anti-symmetric cross-ply laminated plates using a four variable refined theory vol.25, pp.4, 2015, https://doi.org/10.12989/sss.2020.25.4.409
  220. Theoretical impact of Kelvin's theory for vibration of double walled carbon nanotubes vol.8, pp.4, 2015, https://doi.org/10.12989/anr.2020.8.4.307
  221. Nonlinear vibration of smart nonlocal magneto-electro-elastic beams resting on nonlinear elastic substrate with geometrical imperfection and various piezoelectric effects vol.25, pp.5, 2015, https://doi.org/10.12989/sss.2020.25.5.619
  222. A comprehensive review on the modeling of smart piezoelectric nanostructures vol.74, pp.5, 2015, https://doi.org/10.12989/sem.2020.74.5.611
  223. Effect of chiral structure for free vibration of DWCNTs: Modal analysis vol.9, pp.6, 2020, https://doi.org/10.12989/acc.2020.9.6.577
  224. Mixture rule for studding the environmental pollution reduction in concrete structures containing nanoparticles vol.9, pp.3, 2015, https://doi.org/10.12989/csm.2020.9.3.281
  225. Elastic wave characteristics of graphene nanoplatelets reinforced composite nanoplates vol.74, pp.6, 2020, https://doi.org/10.12989/sem.2020.74.6.809
  226. Nonlinear stability of smart nonlocal magneto-electro-thermo-elastic beams with geometric imperfection and piezoelectric phase effects vol.25, pp.6, 2020, https://doi.org/10.12989/sss.2020.25.6.707
  227. Torsional vibration of functionally graded nano-rod under magnetic field supported by a generalized torsional foundation based on nonlocal elasticity theory vol.48, pp.4, 2015, https://doi.org/10.1080/15397734.2019.1642766
  228. Analyzing exact nonlinear forced vibrations of two-phase magneto-electro-elastic nanobeams under an elliptic-type force vol.9, pp.1, 2015, https://doi.org/10.12989/anr.2020.9.1.047
  229. Post-buckling analysis of geometrically imperfect nanoparticle reinforced annular sector plates under radial compression vol.26, pp.1, 2020, https://doi.org/10.12989/cac.2020.26.1.021
  230. Size-dependent free vibration and buckling analysis of sigmoid and power law functionally graded sandwich nanobeams with microstructural defects vol.234, pp.18, 2015, https://doi.org/10.1177/0954406220916481
  231. On scale-dependent stability analysis of functionally graded magneto-electro-thermo-elastic cylindrical nanoshells vol.75, pp.6, 2015, https://doi.org/10.12989/sem.2020.75.6.659
  232. Wave dispersion characteristics of fluid-conveying magneto-electro-elastic nanotubes vol.36, pp.4, 2015, https://doi.org/10.1007/s00366-019-00790-5
  233. Nonlinear vibration and stability of FG nanotubes conveying fluid via nonlocal strain gradient theory vol.78, pp.1, 2021, https://doi.org/10.12989/sem.2021.78.1.103
  234. Wave dispersion of nanobeams incorporating stretching effect vol.31, pp.4, 2015, https://doi.org/10.1080/17455030.2019.1607623
  235. Mechanical analysis of bi-functionally graded sandwich nanobeams vol.11, pp.1, 2015, https://doi.org/10.12989/anr.2021.11.1.055
  236. On static buckling of multilayered carbon nanotubes reinforced composite nanobeams supported on non-linear elastic foundations vol.40, pp.3, 2021, https://doi.org/10.12989/scs.2021.40.3.389
  237. Propagation of waves with nonlocal effects for vibration response of armchair double-walled CNTs vol.11, pp.2, 2015, https://doi.org/10.12989/anr.2021.11.2.183