DOI QR코드

DOI QR Code

The comparative analysis of optimal designed web expanded beams via improved harmony search method

  • Erdal, Ferhat (Department of Civil Engineering, Akdeniz University)
  • Received : 2014.10.03
  • Accepted : 2015.02.13
  • Published : 2015.05.25

Abstract

This study aims at comparing the optimum design of two common types open web expanded beams: with hexagonal openings, also called castellated beams and beams with circular openings referred to as cellular beams. The minimum weights of both beams are taken as the objective functions while the design constraints are respectively implemented from The Steel Construction Institute Publication Numbers 5 and 100. The design methods adopted in these publications are consistent with BS5950 parts. The formulation of the design problem considering the limitations of the above mentioned turns out to be a discrete programming problem. Improved harmony search algorithm is suggested to compare the optimum design of mentioned web-expanded beams to analysis the performance of both beams. The design algorithms based on the technique select the optimum Universal Beam sections, dimensional properties of hexagonal and circular holes and total number of openings along the beam as design variables.

Keywords

References

  1. Altifillisch, M.D., Cooke, B.R. and Toprac, A.A. (1957), "An investigation of open web-expanded beams", Weld. Res. Council Bul., 47, 77-88.
  2. Atiqullah, M.M. and Rao, S.S. (2001), "Tuned annealing for optimization", Comput. Sci., ICCS, 2074, 669-679.
  3. Bazile, A. and Texier, J. (1968), "Tests on castellated beams", Constr. Metallique, 3, 12-25.
  4. Coello, C.A.C. (2000), "Use of a self-adaptive penalty approach for engineering optimization problems", Comput. Indus., 41(2), 113-27. https://doi.org/10.1016/S0166-3615(99)00046-9
  5. British Standards, BS 5950 (2000), Structural Use of Steelworks in Building, Part 1 and 3 Code of Practice for Design in Simple and Continuous construction, hot rolled sections, British Standard Institution, London, U.K.
  6. Carbas, S. and Saka, M.P. (2012), "Optimum topology design of various geometrically nonlinear latticed domes using improved harmony search method", Struct. Multidis. Optim., 45(3), 377-399. https://doi.org/10.1007/s00158-011-0675-2
  7. Carbas, S. and Saka, M.P. (2013), "Efficiency of improved harmony search algorithm for solving engineering optimization problems", Int. J. Optim. Civil Eng., 3(1), 99-114.
  8. Coelho, L.S. and Bernert, D.L.A. (2009), "An improved harmony search algorithm for synchronization of discrete-time chaotic systems", Chaos, Solit. Fract., 41(5), 2526-2532. https://doi.org/10.1016/j.chaos.2008.09.028
  9. Deb, K. (1991), "Optimal design of a welded beam via genetic algorithms", AIAA J., 29, 2013-5. https://doi.org/10.2514/3.10834
  10. Degertekin, S.O. (2009), "Optimum design of steel frames using HS algorithm", Comput. Struct., 82, 718-798.
  11. Dorigo, M. and Stutzle, T. (2004), Ant Colony Optimization, A Bradford Book, Massachusetts Institute of Technology, U.S.A.
  12. Dougherty, B.K. (1993), "Castellated beams: a state of the art report", Technical Report, J. SA Inst. Civ. Eng., 35, No 2.
  13. Erdal, F. and Saka, M.P. (2008), "Effect of beam spacing in the harmony search based optimum design of grillages", Asian J. Civil Eng., 9(3), 215-228.
  14. Erdal, F. and Saka, M.P. (2009), "Optimum design of grillage systems using harmony search algorithm", J. Struct. Multidis. Optim., 38(1), 25-41. https://doi.org/10.1007/s00158-008-0263-2
  15. Erdal, F. (2011), "Ultimate load carrying capacity of optimally designed cellular beams", Ph.D. Dissertation, Middle East Technical University, Ankara, Turkey.
  16. Erdal, F., Dogan, E. and Saka, M.P. (2011), "Optimum design of cellular beams using harmony search and particle swarm optimizers", J. Construct. Steel Res., 67(2), 237-247. https://doi.org/10.1016/j.jcsr.2010.07.014
  17. Erdal, F., Dogan, E. and Saka, M.P. (2013), "An improved particle swarm optimizer for steel grillage systems", Struct. Eng. Mech., 47(4), 513-530. https://doi.org/10.12989/sem.2013.47.4.513
  18. Fesanghary, M., Mahdavi, M., Minary-Jolandan, M. and Alizadeh, Y. (2008), "Hybridizing harmony search algorithm with sequential quadratic programming for engineering optimization problems", Comput. Meth. Appl. Mech. Eng., 197, 3080-3091. https://doi.org/10.1016/j.cma.2008.02.006
  19. Gandomi, A.H., Yang, X.S. and Alavi, A.H. (2011), "Mixed variable structural optimization using firefly algorithm", Comput. Struct., 89(23-24), 2325-36. https://doi.org/10.1016/j.compstruc.2011.08.002
  20. Geem, Z.W. and Kim, J.H. (2001), "A new heuristic optimization algorithm: harmony search", Simulation, 76, 60-68. https://doi.org/10.1177/003754970107600201
  21. Goldberg, D.E. (1989), Genetic algorithms in search, Optimization and Machine Learning, Addison Wesley.
  22. Hasancebi, O., Carbas, S., Dogan, E., Erdal, F. and Saka, M.P. (2009), "Performance evaluation of metaheuristic search techniquesin the optimum design of real size pin jointed structures", Comput. Struct., 87, 284-302. https://doi.org/10.1016/j.compstruc.2009.01.002
  23. Hasancebi, O., Carbas, S., Dogan, E., Erdal, F. and Saka, M.P. (2010), "Comparison of non-deterministic search techniques in the optimum design of real size steel frames", Comput. Struct., 88(17-18), 1033-1048. https://doi.org/10.1016/j.compstruc.2010.06.006
  24. Hasancebi, O., Erdal, F. and Saka, M.P. (2010), "Practical optimum design of pin-jointed steel domes using stochastic search techniques", Int. J. Eng. Appl. Sci. (IJEAS), 2(2), 88-103.
  25. Hasancebi, O., Erdal, F. and Saka, M.P. (2010), "An adaptive harmony search method for structural optimization", J. Struct. Eng., ASCE, 136(4), 419-431. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000128
  26. He, S., Prempain, E. and Wu, Q.H. (2007), "An improved particle swarm optimizer for mechanical design optimization problems", Eng. Optim., 36(5), 585-605. https://doi.org/10.1080/03052150410001704854
  27. Husain, M.U. and Speirs, W.G. (1973), "Experiments on castellated steel beams", J. Am. Weld. Soc., Weld. Res. Suppl., 52(8), 329-342.
  28. Kaveh, A. and Talatahari, S. (2010), "Charged system search for optimum grillage system design using the LRFD-AISC Code", J. Construct. Steel Res., 66, 767-771. https://doi.org/10.1016/j.jcsr.2010.01.007
  29. Kirkpatrick, S., Gerlatt, C.D. and Vecchi, M.P. (1983), "Optimization by simulated annealing", Science, 220, 671-680. https://doi.org/10.1126/science.220.4598.671
  30. Knowles, P.R. (1980), Design of castellated beams for use with BS 5950 and BS 449, Weldable Structures steel produced to BS: Part 1.
  31. Lawson, R.M. (1988), Design for Openings in the Webs of Composite Beams, Steel Construction Institute.
  32. Lee, K.S. and Geem, Z.W. (2004), "A new structural optimization method based on the harmony search algorithm", Comput. Struct., 82,781-798. https://doi.org/10.1016/j.compstruc.2004.01.002
  33. Lee, K.S. and Geem, Z.W. (2005), "A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice", Comput. Meth. Appl. Mech. Eng., 194, 3902-3933. https://doi.org/10.1016/j.cma.2004.09.007
  34. Kennedy, J., Eberhart, R. and Shi, Y. (2001), Swarm Intelligence, Morgan Kaufmann Publishers.
  35. Kerdal, D. and Nethercot, D.A. (1984), "Failure modes for castellated beams", J. Construct. Steel Res., 4, 295-315. https://doi.org/10.1016/0143-974X(84)90004-X
  36. Mahdavi, M., Fesanghary, M. and Damangir, E. (2007), "An improved harmony search algorithm for solving optimization problems", Appl. Math. Comput., 188(2), 1567-1579. https://doi.org/10.1016/j.amc.2006.11.033
  37. Manual of Steel Construction (1989), Allowable Stress Design, 9th Edition, AISC, American Institutes of Steel Construction, Inc, Chicago, Illinois, USA.
  38. Oftadeh, R., Mahjoob, M.J. and Shariatpanahi, M. (2010), "A novel meta-heuristic optimization algorithm inspired by group hunting of animals: Hunting search", Comput. Math. Appl., 60, 2087-2098. https://doi.org/10.1016/j.camwa.2010.07.049
  39. Omran, M.G.H. and Mahdavi, M. (2008), "Global-best harmony search", Appl. Math. Comput., 198(2), 643-656. https://doi.org/10.1016/j.amc.2007.09.004
  40. Parsopoulos, K.E. and Vrahatis, M.N. (2005), "Unified particle swarm optimization for solving constrained engineering optimization problems", Lecture Notes in Computer Science 3612 (LNFA), 582-591.
  41. Redwood, R. and Cho, S.H. (1993), "Design of steel and composite beams with web openings", J. Construct. Steel Res., 25, 23-41. https://doi.org/10.1016/0143-974X(93)90050-3
  42. Saka, M.P. (2009), "Optimum design of steel frames to BS5950 using harmony search algorithm", J. Construct. Steel Res., 65, 36-43. https://doi.org/10.1016/j.jcsr.2008.02.005
  43. Taherinejad, N. (2009), "Highly reliable harmony search algorithm", European conference on circuit theory and design (ECCTD'09), Antalya, Turkey, August.
  44. Toprac, A.A and Cooke, B.R. (1959), An Experimental Investigation of Open-web Beams, Welding Research Council Bulletin, New York, 47, 1-10.
  45. Ward, J.K. (1990), Design of Composite and Non-composite Cellular Beams, The Steel Construction Institute Publication.
  46. Zaarour, W. and Redwood, R.G. (1996), "Web buckling in thin webbed castellated beams", J. Struct. Eng., ASCE, 122(8), 860-866. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:8(860)

Cited by

  1. A Hybrid Harmony Search algorithm for discrete sizing optimization of truss structure vol.69, 2016, https://doi.org/10.1016/j.autcon.2016.05.023
  2. Differential Big Bang - Big Crunch algorithm for construction-engineering design optimization vol.85, 2018, https://doi.org/10.1016/j.autcon.2017.10.019
  3. A firefly algorithm for optimum design of new-generation beams vol.49, pp.6, 2017, https://doi.org/10.1080/0305215X.2016.1218003
  4. Experimental investigation for failure analysis of steel beams with web openings vol.23, pp.6, 2015, https://doi.org/10.12989/scs.2017.23.6.647
  5. Simplified equations for Vierendeel design calculations of composite beams with web openings vol.27, pp.4, 2015, https://doi.org/10.12989/scs.2018.27.4.401
  6. Weight optimization of steel frames with cellular beams through improved hunting search algorithm vol.23, pp.5, 2015, https://doi.org/10.1177/1369433219884456