References
- Adams, G.G. (1978), "An elastic strip pressed against an elastic half plane by a steadily moving force", J. Appl. Mech., 45(1), 89-94. https://doi.org/10.1115/1.3424279
- Adibelli, H., Comez, I. and Erdol, R. (2013), "Receding contact problem for a coated layer and a half-plane loaded by a rigid cylindrical stamp", Arch. Mech., 65(3), 219-236.
- Alexandrov, V.M. (1970), "On plane contact problems of the theory of elasticity in the presence of adhesion or friction", J. Appl. Math. Mech., 34(2), 232-243. https://doi.org/10.1016/0021-8928(70)90137-1
- ANSYS (2008), Swanson Analysis System, USA.
- Argatov, I. (2013), "Contact problem for a thin elastic layer with variable thickness: application to sensitivity analysis of articular contact mechanics", Appl. Math. Model., 37(18-19), 8383-8393. https://doi.org/10.1016/j.apm.2013.03.042
- Birinci, A. and Erdol, R. (2001), "Continuous and discontinuous contact problem for a layered composite resting on simple supports", Struct. Eng. Mech., 12(1), 17-34. https://doi.org/10.12989/sem.2001.12.1.017
- Birinci, A. and Erdol, R. (2003), "A frictionless contact problem for two elastic layers supported by a winkler foundation", Struct. Eng. Mech., 15(3), 331-344. https://doi.org/10.12989/sem.2003.15.3.331
- Brizmer, V., Kligerman, Y. and Etsion, I. (2006), "The effect of contact conditions and material properties on the elasticity terminus of a spherical contact", Int. J. Solid. Struct., 43, 5736-5749. https://doi.org/10.1016/j.ijsolstr.2005.07.034
- Cakiroglu, F., Cakiroglu, M. and Erdol, R. (2001), "Contact problems for two elastic layers resting on elastic half-plane", J. Eng. Mech., ASCE, 127(2), 113-118. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:2(113)
- Chan, S.K. and Tuba, I.S. (1971), "A finite element method for contact problems of solid bodies-1: theory and validation", Int. J. Mech. Sci., 13(7), 615-625. https://doi.org/10.1016/0020-7403(71)90032-4
- Comez, I. and Erdol, R. (2013), "Frictional contact problem of a rigid stamp and an elastic layer bonded to a homogeneous substrate", Arch. Appl. Mech., 83(1), 15-24. https://doi.org/10.1007/s00419-012-0626-4
- Dag, S., Guler, M.A., Yildirim, B. and Ozatag, A.C. (2009), "Sliding frictional contact between a rigid punch and a laterally graded elastic medium", Int. J. Solid. Struct., 46(22-23), 4038-4053. https://doi.org/10.1016/j.ijsolstr.2009.07.023
- Dempsey, J.P., Zhao, Z.G., Minnetyan, L. and Li, H. (1990), "Plane contact of an elastic layer supported by a winkler foundation", J. Appl. Mech., 57(4), 974-980. https://doi.org/10.1115/1.2897670
- Dini, D. and Nowell, D. (2004), "Flat and rounded fretting contact problems incorporating elastic layers", Int. J. Mech. Sci., 46(11), 1635-1657. https://doi.org/10.1016/j.ijmecsci.2004.10.003
- El-Borgi, S., Abdelmoula, R. and Keer, L. (2006), "A receding contact plane problem between a functionally graded layer and a homogeneous substrate", Int. J. Solid. Struct., 43(3-4), 658-674. https://doi.org/10.1016/j.ijsolstr.2005.04.017
- Erdogan, F. and Gupta, G. (1972), "On the numerical solutions of singular integral equations", Q. Appl. Math., 29, 525-534. https://doi.org/10.1090/qam/408277
- Etsion, I., Kligerman, Y. and Kadin, Y. (2005), "Unloading of an elastic-plastic loaded spherical contact", Int. J. Solid. Struct., 42, 3716-3729. https://doi.org/10.1016/j.ijsolstr.2004.12.006
- Francavilla, A. and Zienkiewicz, O.C. (1975), "A note on numerical computation of elastic contact problems", Int. J. Numer. Meth. Eng., 9(4), 913-924. https://doi.org/10.1002/nme.1620090410
- Galin, L.A. (2008), Contact Problems, Springer.
- Garrido, J.A., Foces, A. and Paris, F. (1991), "BEM applied to receding contact problems with friction", Math. Comput. Model., 15(3-5), 143-153. https://doi.org/10.1016/0895-7177(91)90060-K
- Garrido, J.A. and Lorenzana, A. (1998), "Receding contact problem involving large displacements using the BEM", Eng. Anal. Bound. Elem., 21(4), 295-303. https://doi.org/10.1016/S0955-7997(98)00018-6
- Gecit, M.R. (1986), "Axisymmetric contact problem for a semi-infinite cylinder and a half space", Int. J. Eng. Sci., 24(8), 1245-1256. https://doi.org/10.1016/0020-7225(86)90054-6
- Gun, H. and Gao, X.W. (2014), "Analysis of frictional contact problems for functionally graded materials using BEM", Eng. Anal. Bound. Elem., 38, 1-7. https://doi.org/10.1016/j.enganabound.2013.10.004
- Jing, H.S. and Liao, M.L. (1990), "An improved finite element scheme for elastic contact problems with friction", Comput. Struct., 35(5), 571-578. https://doi.org/10.1016/0045-7949(90)90385-F
- Kahya, V., Ozsahin, T.S., Birinci, A. and Erdol, R. (2007), "A receding contact problem for an anisotropic elastic medium consisting of a layer and a half plane", Int. J. Solid. Struct., 44(17), 5695-5710. https://doi.org/10.1016/j.ijsolstr.2007.01.020
- Kumar, N. and Dasgupta, A. (2013), "On the contact problem of an inflated spherical hyperelastic membrane", Int. J. Nonlin. Mech., 57, 130-139. https://doi.org/10.1016/j.ijnonlinmec.2013.06.015
- Li, X.Y., Zheng, R.F. and Chen, W.Q. (2014), "Fundamental solutions to contact problems of a magnetoelectro- elastic half-space indented by a semi-infinite punch", Int. J. Solid. Struct., 51(1), 164-178. https://doi.org/10.1016/j.ijsolstr.2013.09.020
- Liao, X. and Wang, G.G. (2007), "Non-linear dimensional variation analysis for sheet metal assemblies by contact modeling", Finite Elem. Anal. Des., 44(1-2), 34-44. https://doi.org/10.1016/j.finel.2007.08.009
- Long, J.M. and Wang, G.F. (2013), "Effects of surface tension on axisymmetric hertzian contact problem", Mech. Mater., 56, 65-70. https://doi.org/10.1016/j.mechmat.2012.09.003
- Ma, L.F. and Korsunsky, A.M. (2004), "Fundamental formulation for frictional contact problems of coated systems", Int. J. Solid. Struct., 41(11-12), 2837-2854. https://doi.org/10.1016/j.ijsolstr.2003.12.022
- Nowell, D. and Hills, D.A. (1988), "Contact problems incorporating elastic layers", Int. J. Solid. Struct., 24(1), 105-115. https://doi.org/10.1016/0020-7683(88)90102-3
- Oysu, C. (2007), "Finite element and boundary element contact stress analysis with remeshing technique", Appl. Math. Model., 31(12), 2744-2753. https://doi.org/10.1016/j.apm.2006.11.001
- Porter, M.I. and Hills, D.A. (2002), "Note on the complete contact between a flat rigid punch and an elastic layer attached to a dissimilar substrate", Int. J. Mech. Sci., 44(3), 509-520. https://doi.org/10.1016/S0020-7403(01)00106-0
- Ratwani, M. and Erdogan, F. (1973), "On the plane contact problem for a frictionless elastic layer", Int. J. Solid. Struct., 9(8), 921-936. https://doi.org/10.1016/0020-7683(73)90021-8
- Rhimi, M., El-Borgi, S. and Lajnef, N. (2011), "A double receding contact axisymmetric problem between a functionally graded layer and a homogeneous substrate", Mech. Mater., 43(12), 787-798. https://doi.org/10.1016/j.mechmat.2011.08.013
- Roncevic, B. and Siminiati, D. (2010), "Two dimensional receding contact analysis with nx nastran", Adv. Eng., 4, 69-74.
- Satish Kumar, K., Dattaguru, B., Ramamurthy, T.S. and Raju, K.N. (1996), "Elastoplastic contact stress analysis of joints subjected to cyclic loading", Comput. Struct., 60(6), 1067-1077. https://doi.org/10.1016/0045-7949(95)00413-0
- Soldatenkov, I.A. (2013), "The periodic contact problem of the plane theory of elasticity. Taking friction, wear and adhesion into account", Pmm. J. Appl. Math. Mech., 77(2), 245-255. https://doi.org/10.1016/j.jappmathmech.2013.07.017
- Weitsman, Y. (1972), "A tensionless contact between a beam and an elastic half space", Int. J. Eng. Sci., 10(1), 73-81. https://doi.org/10.1016/0020-7225(72)90075-4
- Yaylaci, M. and Birinci, A. (2013), "The receding contact problem of two elastic layers supported by two elastic quarter planes", Struct. Eng. Mech., 48(2), 241-255. https://doi.org/10.12989/sem.2013.48.2.241
- Zhang, W.M. and Meng, G. (2006), "Numerical simulation of sliding wear between the rotor bushing and ground plane in micromotors", Sens. Actuat. A Phys., 126(1), 15-24. https://doi.org/10.1016/j.sna.2005.08.004
Cited by
- Axisymmetric analysis of a functionally graded layer resting on elastic substrate vol.58, pp.3, 2016, https://doi.org/10.12989/sem.2016.58.3.423
- The investigation crack problem through numerical analysis vol.57, pp.6, 2016, https://doi.org/10.12989/sem.2016.57.6.1143
- Characterization of the effect of joint clearance on the energy loss of flexible multibody systems with variable kinematic structure vol.63, pp.5, 2015, https://doi.org/10.12989/sem.2017.63.5.691
- Frictionless Contact Problem for a Functionally Graded Layer Loaded Through Two Rigid Punches Using Finite Element Method vol.35, pp.5, 2019, https://doi.org/10.1017/jmech.2018.55
- Damping and vibration response of viscoelastic smart sandwich plate reinforced with non-uniform Graphene platelet with magnetorheological fluid core vol.33, pp.6, 2015, https://doi.org/10.12989/scs.2019.33.6.891
- DECM: A Discrete Element for Multiscale Modeling of Composite Materials Using the Cell Method vol.13, pp.4, 2015, https://doi.org/10.3390/ma13040880
- Finite element modeling of contact between an elastic layer and two elastic quarter planes vol.26, pp.2, 2020, https://doi.org/10.12989/cac.2020.26.2.107
- Study of tensile behavior of Y shape non-persistent joint using experimental test and numerical simulation vol.26, pp.6, 2015, https://doi.org/10.12989/cac.2020.26.6.565
- Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation vol.38, pp.1, 2015, https://doi.org/10.12989/scs.2021.38.1.001
- Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM vol.27, pp.3, 2015, https://doi.org/10.12989/cac.2021.27.3.199
- Examination of contact problem between functionally graded punch and functionally graded layer resting on elastic plane vol.78, pp.2, 2021, https://doi.org/10.12989/sem.2021.78.2.135
- An efficient higher order shear deformation theory for free vibration analysis of functionally graded shells vol.40, pp.2, 2015, https://doi.org/10.12989/scs.2021.40.2.307
- Numerical simulation on the crack initiation and propagation of coal with combined defects vol.79, pp.2, 2015, https://doi.org/10.12989/sem.2021.79.2.237
- Z shape joints under uniaxial compression vol.12, pp.2, 2015, https://doi.org/10.12989/acc.2021.12.2.105
- Influence of non-persistent joint sets on the failure behaviour of concrete under uniaxial compression test vol.28, pp.3, 2015, https://doi.org/10.12989/cac.2021.28.3.289
- Minimum contact stress modification for profile curve design defects in the beam-spring-cone docking mechanism vol.235, pp.22, 2015, https://doi.org/10.1177/09544062211003625