DOI QR코드

DOI QR Code

연소 모델의 사회적 구성과정에서 나타나는 소집단 활동 특징 탐색

Exploring Small Group Features of the Social-Construction Process of Scientific Model in a Combustion Class

  • 투고 : 2015.01.19
  • 심사 : 2015.04.27
  • 발행 : 2015.04.30

초록

본 연구의 목적은 연소 모델의 사회적 구성 과정에서 나타나는 소집단 활동의 특징을 살펴보는 것이었다. 본 연구를 위해, 중학교 2학년 1개 반을 대상으로, 8개의 소집단으로 나누고, 각 소집단이 3차례의 논의를 통해 연소에 관한 모델 구성을 하도록 MIS과정에 따라 2차시로 수업을 구성하였다. 수업 내용 및 학생과 학생, 학생과 교사의 담화 내용은 비디오 촬영 및 녹음을 한 후 전사하여 분석하였다. 분석 결과, 소집단별 모델 생성에서 협력 유형은 비협동형인 나열형과 의존형, 협동형이 있었으며, 모델 생성과정을 경험함에 따라 2개의 소집단을 제외한 6개의 소집단이 협동형으로 발달하였다. 또한 연소에 관한 모델의 발달을 살펴본 결과, 플로지스톤설에서 산소설로 발전하는 과정에서 나타난 과학자들의 사고와 비슷한 사고 발달이 보였으며, 이를 통해 연소현상에 대한 이해가 발전되고 현상을 설명할 수 있는 모델로 발전하는 것이 나타났다. 협동형 소집단 중 구성원간의 존중, 리더의 민주적인 태도가 높을수록 목표 모델 도달 횟수가 높았다. 또한 성공적인 모델 생성을 위해서는 구성한 모델에 대한 소집단 내, 소집단 간 비판적 검토가 필요하며, 교사의 도움을 모델 수정과 평가에 활용할 줄 아는 능력 또한 요구됨을 알 수 있었다. 이 연구는 과학 모델의 사회적 구성 과정이 학생들의 현상에 대한 이해를 높이는 과학 탐구의 한 방법으로서 교육적으로 의미가 있으며, 모델링 수업 중 교사의 역할에 대한 시사점을 얻는데 그 의의가 있다.

In this study, we explored the development of scientific model through the social-construction process on "combustion." Students were 8th graders from one middle school class. Each student engaged in small group discussions three times and made a group model on combustion. Discourses between peers and teacher were videotaped, audiotaped, and transcribed. The results show that the small groups constructed an initial concept: 'Conditions of combustion', which they then evaluated and revised the initial concept through combustion experiment. Following the discussions, some small groups evaluated their model and made a revised model. Then, the small groups compared various models and constructed a scientific model through consensus within the small group and as a whole class. Finally, students kept revising their model to 'Burning needs oxygen.' This tells us that the social construction process of scientific model made a meaningful role to build scientific model through diverse discussion between the students and their teacher, although they have had some difficult process to reach the final consensus. The data also showed some group features: the members were open to other's ideas. They analyzed the differences between their own ideas from others and revised their model after the whole class discussion. Lastly, they showed the tendency to make a good use of teacher's guidance. This study implies the importance of having social interaction process for students to understand the scientific model and learn the nature of scientific inquiry in class.

키워드

참고문헌

  1. Abd-El-Khalick, F., Boujaoude, S., Duschl, R., Lederman, N. G., Mamlok-Naaman, R., Hofstein, A., ... & Tuan, H. L. (2004). Inquiry in science education: International perspectives. Science education, 88(3), 397-419. https://doi.org/10.1002/sce.10118
  2. Anderson, D., & Biddle, B. J. (1991). Knowledge for policy: Improving education through research. London: Falmer Pr.
  3. Bae, D. & Yoo, J. (2012). Middle School Students' Learning Progressions for Scientific Modeling Force and Motion, New Physics: Sae Mulli(The Korean Physical Society), 62(8), 809-825. https://doi.org/10.3938/NPSM.62.809
  4. Baek, H., Schwarz, C., Chen, J., Hokayem, H., & Zhan, L. (2011). Engaging elementary students in scientific modeling: The MoDeLS fifth-grade approach and findings. In Models and modeling (pp. 195-218). Springer Netherlands.
  5. Bailer-Jones, D. (2009). Scientific models in philosophy of science. University of Pittsburgh Pre.
  6. Bamberger, Y. M., & Davis, E. A. (2013). Middle-school science students' scientific modelling performances across content areas and within a learning progression. International Journal of Science Education, 35(2), 213-238. https://doi.org/10.1080/09500693.2011.624133
  7. Campbell, T., Oh, P. S., & Neilson, D. (2012). Discursive modes and their pedagogical functions in model-based inquiry (MBI) classrooms. International Journal of Science Education, 34(15), 2393-2419. https://doi.org/10.1080/09500693.2012.704552
  8. Choi, J., Lee., S., & Kim, H. B. (2014). Social Interaction according to Student's Approach to Learning Science and Their Levels of Scientific Knowledge during Small-Group Argumentation. Biology Education, 42(4), 371-385.
  9. Clement, J. J. (Ed.). (2008). Creative model construction in scientists and students (pp. 33-64). Springer Netherlands.
  10. Duschl, R. A., Schweingruber, H. A., & Shouse, A. W. (Eds.). (2007). Taking science to school: Learning and teaching science in grades K-8. Washington, D. C.: National Academies Press.
  11. Ford, M. (2008). Disciplinary authority and accountability in scientific practice and learning. Science Education, 92(3), 404-423. https://doi.org/10.1002/sce.20263
  12. Gilbert, S. W. (1991). Model building and a definition of science. Journal of Research in Science Teaching, 28(1), 73-79. https://doi.org/10.1002/tea.3660280107
  13. Gilbert, J. K., Pietrocola, M., Zylbersztajn, A., & Franco, C. (2000). Science and education: Notions of reality, theory and model. In Developing models in science education (pp. 19-40). Springer Netherlands.
  14. Gillies, R. M. (2004). The effects of communication training on teachers' and students' verbal behaviours during cooperative learning. International Journal of Educational Research, 41(3), 257-279. https://doi.org/10.1016/j.ijer.2005.07.004
  15. Hardwicke, A. J. (1995) Using molecular models to teach chemistry: part 2, using models, School Science Review, 77(279), 47-56.
  16. Harrison, A. G., & Treagust, D. F. (2000). Learning about atoms, molecules, and chemical bonds: A case study of multiple-model use in grade 11 chemistry. Science Education, 84(3), 352-381. https://doi.org/10.1002/(SICI)1098-237X(200005)84:3<352::AID-SCE3>3.0.CO;2-J
  17. Hogan, K. (1999). Sociocognitive roles in science group discourse. International Journal of Science Education, 21(8), 855-882. https://doi.org/10.1080/095006999290336
  18. Justi, R. S., & Gilbert, J. K. (2002). Science teachers' knowledge about and attitudes towards the use of models and modelling in learning science. International Journal of science education, 24(12), 1273-1292. https://doi.org/10.1080/09500690210163198
  19. Kang, E., Kim, C. J., Choe, S. U., Yoo, J., Park, H. J., Lee, S., & Kim, H. B. (2012). Small Group Interaction and Norms in the Process of Constructing a Model for Blood Flow in the Heart. Journal of the Korean Association for Science Education, 32(2), 372-397. https://doi.org/10.14697/jkase.2012.32.2.372
  20. Kang, S., & Noh, T. (2000). Effect of Concept Learning Strategy Emphasizing Social Consensus during Discussion. Journal of the Korean Association for Science Education, 20(2), 250-251.
  21. Kim, M. S. (2013). Understanding the co-construction of scientific modeling process of middle school students in small groups: Focusing on situation definition and inter subjectivity. Unpublished master's thesis. Seoul National University, Seoul, Korea.
  22. Kim, S. (2012). Practical knowledge of teachers appeared in development and performance' Co-Construction of Scientific Models' classes. Unpublished master's thesis. Seoul National University, Seoul, Korea.
  23. Kumpulainen, K., & Wray, D. (2012). Classroom interactions and social learning: From theory to practice. Routledge.
  24. Kwak, Y. (2002). Improving the quality of Kore an school education (II) A Qualitative Case Study of Good Science Teaching in the Secondary School. Seoul, Korea: Korean institute for Curriculum and Evaluation.
  25. Kwon, Y. J., Jeong, J. S., Shin, D., Lee, J. K., Lee, I. S. & Byeon, J. H. (2011). Science-Knowledge Generation and Evaluation. Seoul, Korea: Hakjisa Publishing Company.
  26. Latour, B. (1990). Drawing things together, In Lynch M., Woolgar S. (Eds.). Representation in scientific practice, 19-68. Cambridge, MA: MIT Press.
  27. Lee, J., Kim, M., Kim, S. Kim, Y., Song, U., Lee, M., Lee, W., Cho, Y., Jo, Y., Choi, S., & Choi, S. (2008). Cooperative Learning and Research. Seoul, Korea: Kyoukgwahaksa Publishing Company.
  28. Lee, S., Kim, C. J., Choe, S. U., Yoo, J., Park, H. J., Kang, E., & Kim, H. B. (2012). Exploring the Patterns of Group model Development about Blood Flow in the Heart and Reasoning Process by Small Group Interaction. Journal of the Korean Association for Science Education, 32(5), 805-822. https://doi.org/10.14697/jkase.2012.32.5.805
  29. Lemke, J. L. (2001). Articulating communities: Sociocultural perspectives on science education. Journal of research in science teaching, 38(3), 296-316. https://doi.org/10.1002/1098-2736(200103)38:3<296::AID-TEA1007>3.0.CO;2-R
  30. Lehrer, R., & Schauble, L. (2006). Cultivating model-based reasoning in science education. Cambridge handbook of the learning sciences, 371-388.
  31. Lee, T. H. (2013). Cultural Features of Middle School Students in Small Group Inquiry Practices. Unpublished master's thesis. Seoul National University, Seoul, Korea.
  32. National Research Council. (2011). A framework for K-12 science education: Practices, cross cutting concepts, and core ideas. Washington, DC: The National Academies Press.
  33. Noh, T., Yun, J., Kang, H., & Kang, S. (2006). A Comparison of Scientists and Students' Responses to Discrepant Event and Alternative Hypothesis in the Conceptual Change Process from the Phlogiston Theory to the Oxygen Theory. Journal of the Korean Association for Science Education, 26(7), 798-804.
  34. Oh, P. S., Lee, S. K., & Kim, C. J. (2007). Case of Science Classroom Discourse Analyzed from the Perspective of Knowledge-Sharing. Journal of the Korean Association for Science Education, 27(4), 297-308.
  35. Park, Y. S. (2006). Theoretical Study on the Opportunity of Scientific Argumentation for Implementing Authentic Scientific Inquiry. Jour. Korean Earth Science Society, 27(4), 401-415.
  36. Poirier, J. P. (1998). Lavoisier: chemist, biologist, economist. Philadelphia: University of Pennsylvania Press.
  37. Radinsky, J., Oliva, S., & Alamar, K. (2010). Camila, the earth, and the sun: Constructing an idea as shared intellectual property. Journal of Research in Science Teaching, 47(6), 619-642. https://doi.org/10.1002/tea.20354
  38. Rutherford, F. J., & Ahlgren, A. (1991). Science for all Americans. New York: Oxford university press.
  39. Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Acher, A., Fortus, D., & Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632-654. https://doi.org/10.1002/tea.20311
  40. Sfard, A., & McClain, K. (2002). Guest editor's introduction: Analyzing tools: Perspectives on the role of designed artifacts in mathematics learning. Journal of the Learning Sciences, 11(2-3), 153-161. https://doi.org/10.1080/10508406.2002.9672135
  41. Stake, R. E. (1978). Case Studies in Science Education, Volume I: The Case Reports.Washington, D.C.: U.S. Government Printing Office.
  42. Tucker, R., & Reynolds, C. (2006). The impact of teaching models, group structures and assessment modes on cooperative learning in the student design studio. Journal for Education in the Built Environment, 1(2), 39-56. https://doi.org/10.11120/jebe.2006.01020039
  43. Trentin, G. (2000). The Quality-Interactivity Relationship in Distance Education. Educational Technology, 40(1), 17-27.
  44. Vrasidas, C., & McIsaac, M. S. (1999). Factors influencing interaction in an online course. American Journal of Distance Education, 13(3), 22-36. https://doi.org/10.1080/08923649909527033
  45. Vygotsky, L. (1978). Interaction between learning and development. In Guavain & Cole(Eds.) Readings on the development of children. New York; Scientific American books, 34-40.
  46. Windschitl, M., Thompson, J., & Braaten, M. (2008). Beyond the scientific method: Model-based inquiry as a new paradigm of preference for school science investigations. Science education, 92(5), 941-967. https://doi.org/10.1002/sce.20259
  47. Yu, H. W., Cha, H. J., Kim, M. S., Ham, D. C., Kim, H. B., Yoo, J., Park, H. J., Kim, C. J. & Choe, S. U. (2012). Relation between the Personal and Social Factors and the Interacting Role of Science Gifted Students in Social Co-construction of Scientific Model Class. Journal of Gifted/Talented Education, 22(2), 265-290. https://doi.org/10.9722/JGTE.2012.22.2.265

피인용 문헌

  1. 물질의 입자성에 대한 모형 구성 과정에서 나타나는 소집단 토론과 전체 학급 토론의 특징 vol.36, pp.3, 2016, https://doi.org/10.14697/jkase.2016.36.3.0361
  2. 중학교 과학수업에서 과학적 모형의 사회적 구성을 촉진하는 교사 스캐폴딩 분석 vol.36, pp.4, 2015, https://doi.org/10.14697/jkase.2016.36.4.0643
  3. 과학교육에서 모델 및 모델링에 대한 고찰 -메타모델링 지식을 중심으로- vol.37, pp.2, 2015, https://doi.org/10.14697/jkase.2017.37.2.0239
  4. 공통맥락 형성의 관점에서 살펴본 마찰력에 대한 소집단 토론의 특징 vol.37, pp.2, 2015, https://doi.org/10.14697/jkase.2017.37.2.0301
  5. 협력적 비유 생성 활동에서 나타나는 비유의 변화 유형과 토론의 특징 vol.37, pp.3, 2017, https://doi.org/10.14697/jkase.2017.37.3.407
  6. 과학교육에서 모델과 모델링 관련 국내 과학 교육 연구 동향 분석 vol.37, pp.4, 2015, https://doi.org/10.14697/jkase.2017.37.4.539
  7. 중등 과학교육에서 소집단을 활용한 교수학습 연구 분석 및 '소집단 연구' 방법론 고찰 vol.45, pp.3, 2015, https://doi.org/10.15717/bioedu.2017.45.3.437
  8. 과학적 모형의 사회적 구성에서 스마트기기의 역할 모색 vol.37, pp.5, 2015, https://doi.org/10.14697/jkase.2017.37.5.813