DOI QR코드

DOI QR Code

A Study on Characteristics of Solubilization and Biogas Production for Sewage Sludge using Thermal Pretreatment

열적가용화공정을 이용한 하수슬러지의 가용화 특성 및 바이오가스 생산량 평가

  • Jeong, Seong-Yeob (Department of Environmental Energy Engineering, Kyonggi University) ;
  • Yeon, Ho-Suk (Department of Environmental Energy Engineering, Kyonggi University) ;
  • Lee, Chang-Yeol (Department of Environmental Energy Engineering, Kyonggi University) ;
  • Lee, Jong-In (SK chemical Co., Ltd.) ;
  • Chang, Soon-Woong (Department of Environmental Energy Engineering, Kyonggi University)
  • 정성엽 (경기대학교 환경에너지공학과) ;
  • 연호석 (경기대학교 환경에너지공학과) ;
  • 이창열 (경기대학교 환경에너지공학과) ;
  • 이종인 (SK케미칼(주)) ;
  • 장순웅 (경기대학교 환경에너지공학과)
  • Received : 2015.02.10
  • Accepted : 2015.04.06
  • Published : 2015.04.30

Abstract

In this study, an applicability of thermal pretreatment for primary and secondary sludge, which are generated in a sewage treatment plant, was evaluated. The efficiency and charateristics was investigated with each sludge after pretreatment under the condition of $100{\sim}220^{\circ}C$ for 30 minutes. As the result, it was found that $SCOD_{Cr}$, $NH_4{^+}$, VFAs concentrations increased as the pre-treatment temperature increased. For COD solubilization, it was also highly dependent on an increase of temperature resulting in acceleration on hydrolysis and acid fermentation. In the BMP (Biochemical Methane Potential) experiment, for the primary sludge, it showed the higher biogas production rate at a temperature of $220^{\circ}C$, however, the effect was insignificant (5.6%). Whereas, for the secondary sludge, the increase on biogass production rate was 38.8% ($180^{\circ}C$) and this means that the secondary sludge is more suitable for an applicability of thermal pretreatment.

본 연구는 하수처리장에서 발생되는 생슬러지와 잉여슬러지를 대상으로 열적가용화 공정의 적용성을 평가하였다. 열적가용화 효율 및 특성평가는 각 슬러지를 대상으로 $100{\sim}220^{\circ}C$ 온도범위에서 30분간 전처리를 수행한 후 실시되었다. 그 결과, 가용화 온도가 상승함에 따라 $SCOD_{Cr}$, $NH_4{^+}$, VFAs 농도가 증가하는 경향을 확인할 수 있었다. 또한 COD 가용화효율 평가 결과, 온도 상승에 비례하는 경향이 나타나 열적가용화에 의해 가수분해 및 산발표 단계를 촉진시킨 것으로 판단된다. BMP (Biochemical Methane Potential) 실험을 통해 생슬러지의 경우 $220^{\circ}C$에서 가장 높은 biogas 생산량을 보여주었으나, 증가율은 5.6%로 열적가용화에 의한 효과가 미미한 것으로 나타났다. 반면 잉여슬러지의 경우 최대 38.8% ( $180^{\circ}C$) 증가하여, 열적가용화 공정은 잉여슬러지에 대한 적용성이 더욱 우수한 것으로 나타났다.

Keywords

References

  1. Cho, I. H., Ko, I. B. and Kim, J. T., 2014 : Technology trend on the increase of biogas production and sludge reduction in wastewater treatment plants: sludge pretreatment techniques, Korean Journal of Chemical Engineering, 52(4), pp. 413-424. https://doi.org/10.9713/kcer.2014.52.4.413
  2. Lee, H. W., 2008 : A study on the characteristics and utilization of ash from sewage sludge incinerator, Korean Institute of Resources Recycling, 17(3), pp. 3-9.
  3. Baik, S. J., Han, I. S., Choi, I. H., Kang, S. H. and Hong, S. M., 2014 : Research on composting of sewage sludge using dryer facility with indirect heating system, Journal of Korean Society of Water and Wastewater, 28(3), pp. 299-304. https://doi.org/10.11001/jksww.2014.28.3.299
  4. Jeong, S. Y., Jung, S. Y. and Chang, S. W., 2014 : Enhancement of anaerobic biodegradability and solubilization by thermal pre-treatment of waste activated sludge, New & Renewable Energy, 10(1), pp. 20-29. https://doi.org/10.7849/ksnre.2014.10.1.020
  5. Roh, S. A., 2014 : A kinetic studies of pyrolysis and combustion of sewage sludge, Korean Institute of Resources Recycling, 23(6), pp. 47-53.
  6. Ministry of Environment, 2012 : Energy utilization Facilities using organic waste.
  7. Gyeonggi Research Institute, 2011 : Improvement of Digestion Tank Efficiency and Feasibility Study on Biomass gas use.
  8. Lee, C. Y. and Park, S. Y., 2008 : Improvement of solubilization and anaerobic biodegradability for sewage sludge using ultrasonic pre-treatment, Korean Organic Recycling, 16(3), pp. 83-90.
  9. Wang, J., Wang, W., Zhang, X. and Zang, G., 2009 : Digestion of thermally hydrolyzed sewage sludge by anaerobic sequencing batch reactor, Journal of Hazardous Materials, 162(2-4), pp. 799-803. https://doi.org/10.1016/j.jhazmat.2008.05.103
  10. Kim, J. S., Park, C. H., Kim, T. H., Lee, M. G., Kim, S. Y., Kim, S. W. and Lee, J. W., 2003 : Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge, Journal of Bioscience and Bioengineering, 95(3), pp. 271-275. https://doi.org/10.1016/S1389-1723(03)80028-2
  11. Neyens, E. and Baeyens, J., 2003 : A review of thermal sludge pre-treatment processes to improve dewaterability, Journal of Hazardous Materials, 98(1-3), pp. 51-67. https://doi.org/10.1016/S0304-3894(02)00320-5
  12. Li, Y. Y. and Noike, T., 1992 : Upgrading of anaerobic digestion of waste activated sludge by thermal pretreatment, Water Science & Technology, 26(3-4), pp. 857-866.
  13. Kim, D.J. and Kim, H.Y., 2010 : Sludge solubilization by pre-treatment and its effect on methane production and sludge reduction in anaerobic digestion, Korean Journal of Chemical Engineering, 48(1), pp. 103-109.
  14. Wang, J., Wang, W., Zhang, X. and Zang, G., 2009 : Digestion of thermally hydrolyzed sewage sludge by anaerobic sequencing batch reactor, Journal of Hazardous Materials, 162(2-3), pp. 799-803. https://doi.org/10.1016/j.jhazmat.2008.05.103
  15. Wilson, C. A. and Novak, J. T., 2009 : Hydrolysis of macromolecular components of primary and secondary wastewater sludge by thermal hydrolytic pretreatment, Water Research, 43(18), pp. 4489-4498. https://doi.org/10.1016/j.watres.2009.07.022
  16. Park, Y. J., Tsuno, H., Hidaka, T. and Kim, S.K., 2007 : Effect of heat treatment of sewage sludge on solubilization and thermophilic acid fermentation efficinecy, Korean Organic Recycling, 15(2), pp. 89-97.
  17. Owen, W., Stuckey, D., Healy, J., Young, L. and McCarty, P., 1979 : Bioassay for monitoring biochemical methane potential & anaerobic toxity, Water Research, 13(6), pp. 485-492. https://doi.org/10.1016/0043-1354(79)90043-5
  18. Dwyer, J., Starrenburg, D., Tait, S., Barr, K., Batstone, D. J. and Lant, P., 2008 : Decreasing activated sludge thermal hydrolysis temperature reduces product colour, without decreasing degradability, Water research, 42(18), pp. 4699-4709. https://doi.org/10.1016/j.watres.2008.08.019
  19. APHA-AWWA-WEF, 2005 : Standard methods for the examination of water & wastewater, 21st edition, Health association, Washington, D. C., USA.
  20. Debois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F., 1956 : Colorimetric method for determination of sugars and related substances, Analytical Chemistry, 28(3), pp. 350-356. https://doi.org/10.1021/ac60111a017
  21. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J., 1951 : Protein measurement with the folin phenol reagent, Journal of Biological Chemistry, 193(1), pp. 265-275.
  22. Strong, P. J., McDonald, B. and Gapes, D. J., 2011 : Combined thermochemical and fermentative destruction of municipal biosolids: A comparison between thermal hydrolysis and wet oxidative pre-treatment, Bioresource Technology, 102(9), pp.5520-5527. https://doi.org/10.1016/j.biortech.2010.12.027
  23. Yang, X., Wang, X. and Wang, L., 2010 : Transferring of components and energy output in industrial sewage sludge disposal by thermal pretreatment and two-phase anaerobic process, Bioresource Technology, 101(8), pp. 2580-2584. https://doi.org/10.1016/j.biortech.2009.10.055
  24. Bougrier, C., Albasi, C., Delgenes, J. P. and Carrere, H., 2006 : Effect of ultrasonic, thermal and ozone pretreatments on waste activated sludge solubilisation and anaerobic biodegrada bility, Chemical Engineering and Processing, 45(8), pp. 711-718. https://doi.org/10.1016/j.cep.2006.02.005
  25. Rajagopal, R., Masse, D.I. and Singh, G., 2013 : A critical review on inhibition of anaerobic digestion process by excess ammonia, Bioresource Technology, 143, pp. 632-641. https://doi.org/10.1016/j.biortech.2013.06.030
  26. Hansen, K. H., Angelidaki, I. and Ahring, B. K., 1998 : Anaerobic digestion of swine manure: inhibition by ammonia, Water Research, 32(1), pp. 5-12. https://doi.org/10.1016/S0043-1354(97)00201-7
  27. Nakakubo, R., Moller, H. B., Nielsen, A. M. and Matsuda, J., 2008 : Ammonia inhibition of methanogenesis and identification of process indicators during anaerobic digestion. Environmental Engineering Science, 25(10), pp. 1487-.1496. https://doi.org/10.1089/ees.2007.0282
  28. Yenigun, O. and Demirel, B., 2013 : Ammonia inhibition in anaerobic digestion: A review, Process Biochemistry, 48(5-6), pp. 901-911. https://doi.org/10.1016/j.procbio.2013.04.012
  29. Bougrier, C., Delgenes, J. P. and Carrere, H., 2008 : Effects of thermal treatments on five different waste activated sludge samples solubilization, physical properties and anaerobic digestion, Biochemical Engineering Journal, 139(2), pp. 236-244.
  30. Valo, A., Carrere, H. and Delgenes, J. P., 2004 : Thermal, chemical and thermo-chemical pre-treatment of waste activated sludge for anaerobic digestion, Journal of Chemical Technology and Biotechnology, 79(11), pp. 1197-1203. https://doi.org/10.1002/jctb.1106
  31. Val del Rio, A., Morales, N., lsanta, E., Mosquera-Corral, A., Campos, J. L., Steyer, J. P. and Carrere, H., 2011 : Thermal pre-treatment of aerobic granular sludge: Impact on anaerobic biodegradability, Water Research, 45(18), pp. 6011-6020. https://doi.org/10.1016/j.watres.2011.08.050
  32. Vavilin, V. A., Rytov, S. V., Lokshina, L. Y., Pavlostathis, S. G. and Barlaz, M. A., 2002 : Distributed model of solid waste digestion effects of leachate recirculation and pH adjustment, Biotechnology and Bioengineering, 81(1), pp. 66-73. https://doi.org/10.1002/bit.10450
  33. Aquino, S. F. and Stuckey, D. C., 2008 : Integrated model of the production of soluble microbial products (SMP) and extracellular polymeric substances (EPS) in anaerobic chemostats during transient conditions, Biochemical Engineering Journal, 38(2), pp. 138-146. https://doi.org/10.1016/j.bej.2007.06.010

Cited by

  1. Economic Feasibility Analysis of Building Seonam Biogas Combined Heat and Power Plant vol.25, pp.4, 2016, https://doi.org/10.5855/ENERGY.2016.25.4.141