참고문헌
- Banerjee, S., Gelfand, A. E., Finley, A. O. and Sang, H. (2008). Gaussian predictive process models for large spatial data sets, Journal of the Royal Statistical Society B, 70, 825-848. https://doi.org/10.1111/j.1467-9868.2008.00663.x
- Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems, Journal of the Royal Statistical Society, Series B, 36, 192-236.
- Caragea, P. and Kaiser, M. (2009). Autologistic models with interpretable parameters, Journal of Agricul-tural, Biological, and Environmental Statistics, 14, 281-300. https://doi.org/10.1198/jabes.2009.07032
- Cressie, N. A. C. (1993). Statistics for Spatial Data, 2nd edition, Wiley, New York.
- Diggle, P. J., Tawn, J. A. and Moyeed, R. A. (1998). Model-based geostatistics, Journal of the Royal Statistical Society: Series C (Applied Statistics), 47, 299-350.
- Hartman, L. and Hossjer, O. (2008). Fast kriging of large data sets with Gaussian Markov random fields, Computational Statistics and Data Analysis, 52, 2331-2349. https://doi.org/10.1016/j.csda.2007.09.018
- Hughes, J. and Haran, M. (2013). Dimension reduction and alleviation of confounding for spatial generalized linear mixed models, Journal of the Royal Statistical Society: Series B, 75, 139-159. https://doi.org/10.1111/j.1467-9868.2012.01041.x
- Hughes, J. and Cui, X. (2015). ngspatial: Fitting the centered autologistic and sparse spatial generalized linear mixed models for areal data. R package.
- Kammann, E. E. and Wand, M. P. (2003). Geoadditive models, Applied Statistics, 52, 1-18.
- Lin, X., Wahba, G., Xiang, D., Gao, F., Klein, R. and Klein, B. (2000). Smoothing spline ANOVA models for large datasets with Bernoulli observations and the randomized GACV, The Annals of Statistics, 28, 1570-1600. https://doi.org/10.1214/aos/1015957471
- Lindgren, F., Lindstrom, J. and Rue, H. (2011). An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic partial differential equation approach, Journal of the Royal Statistical Society B, 73, 423-498. https://doi.org/10.1111/j.1467-9868.2011.00777.x
- Paciorek, C. J. (2007). Computational techniques for spatial logistic regression with large datasets, Computational Statistical Data Analysis, 51, 3631-3653. https://doi.org/10.1016/j.csda.2006.11.008
- Reich, B., Hodges, J. and Zadnik, V. (2006). Effects of residual smoothing on the posterior of the fixed effects in disease-mapping models, Biometrics, 62, 1197-1206. https://doi.org/10.1111/j.1541-0420.2006.00617.x
- Rue, H. and Held, L. (2005). Gaussian Markov Random Fields: Theory and Applications, Chapman & Hall/CRC, Boca Raton.
- Rue, H., Martino, S. and Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations, Journal of the Royal Statistical Society B, 71, 319-392. https://doi.org/10.1111/j.1467-9868.2008.00700.x
- Rue, H., Martino, S., Finn, L., Simpson, D., Riebler, A. and Krainski, E. T. (2014). INLA: Functions which allow to perform full Bayesian analysis of latent Gaussian models using integrated nested Laplace approximation. R package, version 0.0-1404466478.
- Rue, H. and Tjelmeland, H. (2002). Fitting Gaussian Markov random fields to Gaussian field, Scandinavian Journal of Statistics, 29, 31-49. https://doi.org/10.1111/1467-9469.00058
- Wikle, C. and Cressie, N. (1999). A dimension-reduced approach to space-time Kalman filtering, Biometrika, 86, 815-829. https://doi.org/10.1093/biomet/86.4.815