참고문헌
- Agresti, A. (2013). Categorical Data Analysis, 3rd Edition, Wiley.
- Breslow, N. E. and Clayton, D. G. (1993). Approximate inference in generalized linear mixed models, Journal of the American Statistical Association, 88, 125-134.
- Daniels, J. M. and Zhao, Y. D. (2003). Modeling the random effects covariance matrix in longitudinal data, Statistics in Medicine, 22, 1631-1647. https://doi.org/10.1002/sim.1470
- Daniels, M. J. and Pourahmadi, M. (2002). Bayesian analysis of covariance matrices and dynamic models for longitudinal data, Biometrika, 89, 553-566. https://doi.org/10.1093/biomet/89.3.553
- Daniels, M. J. and Pourahmadi, M. (2009). Modeling covariance matrices via partial autocorrelations, Journal of Multivariate Analysis, 100, 2352-2363. https://doi.org/10.1016/j.jmva.2009.04.015
- Diggle, P. J., Heagerty, P., Liang, K.-Y. and Zeger, S. L. (2002). Analysis of Longitudinal Data, 2nd Edition, Analysis of Longitudinal Data.
- Heagerty, P. J. (1999). Marginally specified logistic-normal models for longitudinal binary data, Biometrics, 55, 688-698. https://doi.org/10.1111/j.0006-341X.1999.00688.x
- Heagerty, P. J. (2002). Marginalized transition models and likelihood inference for longitudinal categorical data, Biometrics, 58, 342-351. https://doi.org/10.1111/j.0006-341X.2002.00342.x
- Heagerty, P. J. and Kurland, B. F. (2001). Misspecified maximum likelihood estimates and generalized linear mixed models, Biometrika, 88, 973-985. https://doi.org/10.1093/biomet/88.4.973
- Lee, K. (2013). Bayesian modeling of random effects covariance matrix for generalized linear mixed models, Communication for Statistical Applications and Methods, 20, 235-240. https://doi.org/10.5351/CSAM.2013.20.3.235
- Lee, K., Daniels, M. and Joo, Y. (2013). Flexible marginalized models for bivariate longitudinal ordinal data, Biostatistics, 14, 462-476. https://doi.org/10.1093/biostatistics/kxs058
- Lee, K. and Yoo, J. K. (2014). Bayesian Cholesky factor models in random effects covariance matrix for generalized linear mixed models, Computational Statistics & Data Analysis, 80, 111-116. https://doi.org/10.1016/j.csda.2014.06.016
- Lee, K., Yoo, J. K., Lee, J. and Hagan, J. (2012). Modeling the random effects covariance matrix for the generalized linear mixed models, Computational Statistics & Data Analysis, 56, 1545-1551. https://doi.org/10.1016/j.csda.2011.09.011
- Liang, K. Y. and Zeger, S. L. (1986). Longitudinal analysis using generalized linear models, Biometrika, 73, 13-22. https://doi.org/10.1093/biomet/73.1.13
- Pan, J. and Mackenzie, G. (2003). On modeling mean-covariance structure in longitudinal studies, Biometrika, 90, 239-244. https://doi.org/10.1093/biomet/90.1.239
- Pan, J. and Mackenzie, G. (2006). Regression models for covariance structures in longitudinal studies, Statistical Modeling, 6, 43-57. https://doi.org/10.1191/1471082X06st105oa
- Pourahmadi, M. (1999). Joint mean-covariance models with applications to longitudinal data: unconstrained parameterisation, Biometrika, 86, 677-690. https://doi.org/10.1093/biomet/86.3.677
- Pourahmadi, M. (2000). Maximum likelihood estimation of generalized linear models for multivariate normal covariance matrix, Biometrika, 87, 425-435. https://doi.org/10.1093/biomet/87.2.425
- Pourahmadi, M. (2007). Cholesky decompositions and estimation of a covariance matrix: Orthogonality of variance-correlation parameters, Biometrika, 94, 1006-1013. https://doi.org/10.1093/biomet/asm073
- Pourahmadi, M. and Daniels, M. J. (2002). Dynamic conditionally linear mixed models for longitudinal data, Biometrics, 58, 225-231. https://doi.org/10.1111/j.0006-341X.2002.00225.x
- Zhang, W. and Leng, C. (2012). A moving average Cholesky factor model in covariance modeling for longitudinal data, Biometrika, 99, 141-150. https://doi.org/10.1093/biomet/asr068
피인용 문헌
- Bayesian modeling of random effects precision/covariance matrix in cumulative logit random effects models vol.24, pp.1, 2017, https://doi.org/10.5351/CSAM.2017.24.1.081