DOI QR코드

DOI QR Code

Nuclear Medicine in Pediatric Urology

  • Jang, Su Jin (Department of Nuclear Medicine, CHA Bundang Medical Center CHA University)
  • Received : 2015.03.15
  • Accepted : 2015.04.25
  • Published : 2015.04.30

Abstract

Renal scintigraphic methods, which are physiologic and minimally invasive, have played important role in the management of various renal diseases in children, providing sensitive tool for early detection of disease even before structural changes become prominent and giving valuable functional and anatomical information to aid medical decision makings in the treatment and follow-up of patients. This review article focuses on the concept and advantages of renal scintigraphy in pediatric patients with various urologic diseases.

Keywords

References

  1. Bubeck B, Brandau W, Weber E, Kalble T, Parekh N, Georgi P. Pharmacokinetics of technetium-99m-MAG3 in humans. J Nucl Med 1990;31:1285-93.
  2. Conway JJ, Maizels M. The "well tempered" diuretic renogram: a standard method to examine the asymptomatic neonate with hydronephrosis or hydroureteronephrosis. A report from combined meetings of The Society for Fetal Urology and members of The Pediatric Nuclear Medicine Council--The Society of Nuclear Medicine. J Nucl Med 1992;33:2047-51.
  3. Klopper JF, Hauser W, Atkins HL, Eckelman WC, Richards P. Evaluation of 99m Tc-DTPA for the measurement of glomerular filtration rate. J Nucl Med 1972;13:107-10.
  4. Arnold RW, Subramanian G, McAfee JG, Blair RJ, Thomas FD. Comparison of 99mTc complexes for renal imaging. J Nucl Med 1975;16:357-67.
  5. Lee HB, Blaufox MD. Mechanism of renal concentration of technetium-99m glucoheptonate. J Nucl Med 1985;26:1308-13.
  6. Weyer K, Nielsen R, Petersen SV, Christensen EI, Rehling M, Birn H. Renal uptake of 99mTc-dimercaptosuccinic acid is dependent on normal proximal tubule receptor-mediated endocytosis. J Nucl Med 2013;54:159-65. https://doi.org/10.2967/jnumed.112.110528
  7. Daly MJ, Jones W, Rudd TG, Tremann J. Differential renal function using technetium-99m dimercaptosuccinic acid (DMSA): in vitro correlation. J Nucl Med 1979;20:63-6.
  8. Piepsz A, Colarinha P, Gordon I, Hahn K, Olivier P, Roca I, et al. Guidelines for 99mTc-DMSA scintigraphy in children. Eur J Nucl Med 2001;28:BP37-41.
  9. Taylor AT, Lipowska M, Marzilli LG. (99m)Tc(CO)3(NTA): a (99m)Tc renal tracer with pharmacokinetic properties comparable to those of (131)I-OIH in healthy volunteers. J Nucl Med 2010;51:391-6. https://doi.org/10.2967/jnumed.109.070813
  10. Taylor AT, Lipowska M, Cai H. 99mTc(CO)3(NTA) and 131I-OIH: comparable plasma clearances in patients with chronic kidney disease. J Nucl Med 2013;54:578-84. https://doi.org/10.2967/jnumed.112.108357
  11. Stabin M, Taylor A, Jr., Eshima D, Wooter W. Radiation dosimetry for technetium-99m-MAG3, technetium-99m-DTPA, and iodine-131-OIH based on human biodistribution studies. J Nucl Med 1992;33:33-40.
  12. Grant FD, Gelfand MJ, Drubach LA, Treves ST, Fahey FH. Radiation doses for pediatric nuclear medicine studies: comparing the North American consensus guidelines and the pediatric dosage card of the European Association of Nuclear Medicine. Pediatr Radiol 2014.
  13. Gelfand MJ, Parisi MT, Treves ST, Pediatric Nuclear Medicine Dose Reduction Workgroup. Pediatric radiopharmaceutical administered doses: 2010 North American consensus guidelines. J Nucl Med 2011;52:318-22. https://doi.org/10.2967/jnumed.110.084327
  14. Lassmann M, Biassoni L, Monsieurs M, Franzius C, Jacobs F, Eanm Dosimetry Paediatrics Committees. The new EANM paediatric dosage card. Eur J Nucl Med Mol 2007;34:796-8. https://doi.org/10.1007/s00259-007-0370-0
  15. Celik T, Yalcin H, Gunay EC, Ozen A, Ozer C. Comparison of the Relative Renal Function Calculated with 99mTc-Diethylenetriaminepentaacetic Acid and 99mTc-Dimercaptosuccinic Acid in Children. World J Nucl Med 2014;13:149-53. https://doi.org/10.4103/1450-1147.144812
  16. Gibson P, Shammas A, Cada M, Licht C, Gupta AA. The role of Tc-99m-DTPA nuclear medicine GFR studies in pediatric solid tumor patients. J Pediatre Hematol Oncol 2013;35:108-11. https://doi.org/10.1097/MPH.0b013e31825804b2
  17. Filler G, Sharma AP. How to monitor renal function in pediatric solid organ transplant recipients. Pediatr Transplant 2008;12:393-401. https://doi.org/10.1111/j.1399-3046.2007.00885.x
  18. Gutte H, Moller ML, Pfeifer AK, Thorup J, Borgwardt L, Kristoffersen U S, et al. Estimating GFR in children with 99mTc-DTPA renography: a comparison with single-sample 51Cr-EDTA clearance. Clin Physiol Funct Imaging 2010;30:169-74. https://doi.org/10.1111/j.1475-097X.2009.00910.x
  19. Piepsz A. Antenatal detection of pelviureteric junction stenosis: main controversies. Semin Nucl Med 2011;41:11-9. https://doi.org/10.1053/j.semnuclmed.2010.07.008
  20. Chiou YY, Chiu NT, Wang ST, Cheng HL, Tang MJ. Factors associated with the outcomes of children with unilateral ureteropelvic junction obstruction. J Urol 2004;171:397-402; discussion
  21. Piepsz A, Tondeur M, Nogarede C, Collier F, Ismaili K, Hall M, et al. Can severely impaired cortical transit predict which children with pelvi-ureteric junction stenosis detected antenatally might benefit from pyeloplasty? Nucl Med Commun 2011;32:199-205. https://doi.org/10.1097/MNM.0b013e328340c586
  22. Harper L, Bourquard D, Grosos C, Abbo O, Ferdynus C, Michel JL, et al. Cortical transit time as a predictive marker of the need for surgery in children with pelvi-ureteric junction stenosis: preliminary study. J Pediatr Urol 2013;9(6 Pt B):1054-8. https://doi.org/10.1016/j.jpurol.2013.03.002
  23. Castagnetti M, Novara G, Beniamin F, Vezzu B, Rigamonti W, Artibani W. Scintigraphic renal function after unilateral pyeloplasty in children: a systematic review. BJU Int 2008;102: 862-8. https://doi.org/10.1111/j.1464-410X.2008.07597.x
  24. Montini G, Tullus K, Hewitt I. Febrile urinary tract infections in children. N Engl J Med 2011;365:239-50. https://doi.org/10.1056/NEJMra1007755
  25. Taylor AT. Radionuclides in nephrourology, part 1: Radiopharmaceuticals, quality control, and quantitative indices. J Nucl Med 2014;55:608-15. https://doi.org/10.2967/jnumed.113.133447
  26. Dalirani R, Mahyar A, Sharifian M, Mohkam M, Esfandiar N, Ghehsareh Ardestani A. The value of direct radionuclide cystography in the detection of vesicoureteral reflux in children with normal voiding cystourethrography. Pediatr Nephrol 2014;29:2341-5. https://doi.org/10.1007/s00467-014-2871-y
  27. Polito C, Rambaldi PF, La Manna A, Mansi L, Di Toro R. Enhanced detection of vesicoureteric reflux with isotopic cystography. Pediatr Nephrol 2000;14:827-30. https://doi.org/10.1007/PL00013442
  28. Piepsz A, Ham HR. Pediatric applications of renal nuclear medicine. Semin Nucl Med 2006;3:16-35.
  29. Skoog SJ, Peters CA, Arant BS, Jr., Copp HL, Elder JS, Hudson RG, et al. Pediatric vesicoureteral reflux guidelines panel summary report: Clinical practice guidelines for screening siblings of children with vesicoureteral reflux and neonates/infants with prenatal hydronephrosis. J Urol 2010;184:1145-51. https://doi.org/10.1016/j.juro.2010.05.066
  30. Mocan H, Beattie TJ, Murphy AV. Renal venous thrombosis in infancy: long-term follow-up. Pediatr Nephrol 1991;5:45-9. https://doi.org/10.1007/BF00852843
  31. Piscitelli A, Galiano R, Piccolo V, Concolino D, Strisciuglio P. Successful management of neonatal renal venous thrombosis. Pediatr Int 2014;56:e65-7. https://doi.org/10.1111/ped.12453
  32. Wyszynska T, Cichocka E, Wieteska-Klimczak A, Jobs K, Januszewicz P. A single pediatric center experience with 1025 children with hypertension. Acta Paediatr 1992;81:244-6. https://doi.org/10.1111/j.1651-2227.1992.tb12213.x
  33. Taylor AT. Radionuclides in nephrourology, Part 2: pitfalls and diagnostic applications. J Nucl Med 2014;55:786-98. https://doi.org/10.2967/jnumed.113.133454
  34. Tullus K, Brennan E, Hamilton G, Lord R, McLaren CA, Marks SD, et al. Renovascular hypertension in children. Lancet 2008;371:1453-63. https://doi.org/10.1016/S0140-6736(08)60626-1
  35. Ng CS, de Bruyn R, Gordon I. The investigation of renovascular hypertension in children: the accuracy of radio-isotopes in detecting renovascular disease. Nucl Med Commun 1997;18:1017-28. https://doi.org/10.1097/00006231-199711000-00004
  36. Gencoglu EA, Moray G, Karakayali H, Emiroglu R, Haberal M. The value of quantitative Tc-99m diethylenetriamine pentaacetic acid scintigraphy for assessing pediatric renal transplant recipients. Transplant Proc 2003;35:2630-3. https://doi.org/10.1016/j.transproceed.2003.08.061
  37. Lopes de Souza SA, Barbosa da Fonseca LM, Torres Goncalves R, Salomao Pntes D, Holzer TJ, Proenca Martins FP, et al. Diagnosis of renal allograft rejection and acute tubular necrosis by 99mTcmononuclear leukocyte imaging. Transplant Proc 2004;36:2997-3001. https://doi.org/10.1016/j.transproceed.2004.11.100
  38. Sfakianakis GN, Sfakianaki E, Georgiou M, Serafini A, Ezudding S, Kuker R, et al. A renal protocol for all ages and all indications: mercapto-acetyl-triglycine (MAG3) with simultaneous injection of furosemide (MAG3-F0): a 17-year experience. Semin Nucl Med 2009;39:156-73. https://doi.org/10.1053/j.semnuclmed.2008.11.001
  39. Yoo JM, Koh JS, Han CH, Lee SL, Ha US, Kang SH, et al. Diagnosing acute pyelonephritis with CT, Tc-DMSA SPECT, and doppler ultrasound: A comparative study. Korean J Urol 2010;51:260-5. https://doi.org/10.4111/kju.2010.51.4.260
  40. Sfakianakis GN, Cavagnaro F, Zilleruelo G, Abitbol C, Montane B, Georgious M, et al. Diuretic MAG3 scintigraphy (F0) in acute pyelonephritis: regional parenchymal dysfunction and comparison with DMSA. J Nucl Med 2000;41:1955-63.
  41. S. T. Trevis MD. Pediatric Nuclear Medicine/PET: Springer New York; 2007.
  42. Son H, Heiba S, Kostakoglu L, Machac J. Extraperitoneal urine leak after renal transplantation: the role of radionuclide imaging and the value of accompanying SPECT/CT - a case report. BMC Med Imaging 2010;10:23. https://doi.org/10.1186/1471-2342-10-23
  43. Szabo Z, Alachkar N, Xia J, Mathews WB, Rabb H. Molecular imaging of the kidneys. Semin Nucl Med 2011;41:20-8. https://doi.org/10.1053/j.semnuclmed.2010.09.003
  44. Xia J, Seckin E, Xiang Y, Vranesic M, Mathews WB, Hong K, et al. Positron-emission tomography imaging of the angiotensin II subtype 1 receptor in swine renal artery stenosis. Hypertension 2008;51:466-73. https://doi.org/10.1161/HYPERTENSIONAHA.107.102715
  45. Pathuri G, Sahoo K, Awasthi V, Gali H. Renogram comparison of p-[(18)F]fluorohippurate with o-[(125)I]iodohippurate and [(99 m)Tc]MAG3 in normal rats. Nucl Med Commun 2011;32:908-12. https://doi.org/10.1097/MNM.0b013e32834a6db6
  46. Koivuviita N, Liukko K, Kudomi N, Oikonen V, Tertti R, Manner I, et al. The effect of revascularization of renal artery stenosis on renal perfusion in patients with atherosclerotic renovascular disease. Nephrol Dial Transplant 2012;27:3843-8. https://doi.org/10.1093/ndt/gfs301
  47. Tahari AK, Bravo PE, Rahmim A, Bengel FM, Szabo Z. Initial human experience with Rubidium-82 renal PET/CT imaging. J Med Imaging Radiat Oncol 2014;58:25-31. https://doi.org/10.1111/1754-9485.12079

Cited by

  1. Nuclear Imaging in Pediatric Kidney Diseases vol.55, pp.7, 2015, https://doi.org/10.1007/s13312-018-1303-7
  2. Effective dose and radiation risk estimation in certain paediatric renal imaging procedures vol.154, pp.None, 2015, https://doi.org/10.1016/j.radphyschem.2018.06.016
  3. The impact of Technetium‐99m dimercapto‐succinic acid scintigraphy on DNA damage and oxidative stress in children vol.75, pp.11, 2021, https://doi.org/10.1111/ijcp.14810