DOI QR코드

DOI QR Code

Physiological Characteristics of Melon Plants Showing Leaf Yellowing Symptoms Caused by CABYV Infection

CABYV 감염 멜론의 황화증상에 따른 생리적인 특성

  • Lee, Hee Ju (Vegetable Research Division, National Institute of Horticultural and Herbal Science) ;
  • Kim, Mi-Kyeong (Vegetable Research Division, National Institute of Horticultural and Herbal Science) ;
  • Lee, Sang Gyu (Vegetable Research Division, National Institute of Horticultural and Herbal Science) ;
  • Choi, Chang Sun (Vegetable Research Division, National Institute of Horticultural and Herbal Science) ;
  • Choi, Hong-Soo (Crop Protection Division, National Academy of Agricultural Science) ;
  • Kwak, Hae Ryun (Crop Protection Division, National Academy of Agricultural Science) ;
  • Choi, Gug Seoun (Horticultural & Herbal Crop Environment Division, National Institute of Horticultural and Herbal Science (NIHHS), Rural Development Administration (RDA)) ;
  • Chun, Changhoo (Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University)
  • 이희주 (농촌진흥청 국립원예특작과학원 채소과) ;
  • 김미경 (농촌진흥청 국립원예특작과학원 채소과) ;
  • 이상규 (농촌진흥청 국립원예특작과학원 채소과) ;
  • 최장선 (농촌진흥청 국립원예특작과학원 채소과) ;
  • 최홍수 (국립농업과학원 작물보호과) ;
  • 곽해련 (국립농업과학원 작물보호과) ;
  • 최국선 (국립원예특작과학원 원예특작환경과) ;
  • 전창후 (서울대학교 농업생명과학대학 식물생산과학부)
  • Received : 2014.09.04
  • Accepted : 2015.01.06
  • Published : 2015.04.30

Abstract

Melon leaves showing yellowing symptoms were analyzed using electron microscopy and RT-PCR for major cucurbit-infecting-viruses (CMV, MNSV, CGMMV, SqMV, WMV, KGMMV, PRSV and ZYMV) reported in Korea, but these viruses were not detected. As the result of further analysis by next-generation sequencing (NGS), the virus was identified as Cucurbit aphid-borne yellows virus (CABYV), and then confirmed by RT-PCR using CABYV-specific primers. When photosynthetic capacity was measured based on chlorophyll fluorescence yield (ChlFY), the leaves of the diseased plants showed $4.09{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, which was one-third of the readings observed for unaffected normal plants ($12.36{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$). The root functions of plants affected by leaf yellowing symptoms (LYS) was $0.28mg{\cdot}g^{-1}$, about half that measured for the normal unaffected plants ($0.48mg{\cdot}g^{-1}$). Cytological observations revealed that there were no morphological differences in the palisade parenchyma and mesophyll spongy cells of the leaves between the diseased and the normal plants. However, the same leaf cells of the affected plants contained more starch granules compared to those of the normal, unaffected plants. We conclude that the LYS of muskmelon is not merely a physiological disorder but a viral disease caused by CABYV and spread by aphids.

최근 멜론 재배지에서 확산되고 있는 멜론 황화엽 증상의 발생 원인을 구명하고자 황화엽 발생개체와 정상 개체간의 생육과 바이러스 이병 여부를 평가하였다. 그 결과 황화증상을 보이는 멜론 잎에 대해 전자현미경 검경 및 국내 보고된 박과 감염 8종에 대해 RT-PCR한 결과 바이러스가 진단되지 않았다. 국내 미보고된 바이러스로 의심되어 차세대유전체염기서열분석(NGS)를 이용하여 진단한 결과 박과진딧물바이러스(CABYV)로 판정되어 CABYV 특이프라이머를 이용하여 RT-PCR 한 결과 모두 CABYV 감염이 확인되었다. 광합성 능력은 정상엽의 경우 $12.36{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$였고, 황화엽은 ($4.09{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$로 황화엽이 정상엽의 1/3 수준으로 낮았다. 뿌리의 활력도 정상적인 생육을 보인 멜론에서는 $0.48mg{\cdot}g^{-1}$이었으나 황화증상이 발생한 개체에서는 $0.28mg{\cdot}g^{-1}$로 황화증상 개체의 뿌리 활력이 정상 개체보다 2배 정도 낮았다. 잎의 무기성분은 모든 성분에서 정상엽이 황화엽보다 2배 이상 유의성 있게 높게 나왔고, 특히 철분의 함량은 20배 정도의 차이를 보였다. 정상 개체와 황화증상 개체의 세포조직을 관찰한 결과, 울타리조직이나 해면조직은 모두 정상적인 모양을 보여 황화증상이 잎의 세포조직에는 영향을 미치지 않는 것으로 사료되었지만 다만, 황화증상 개체의 잎은 통도조직의 주변을 중심으로 전분이 많이 축적되어 있는 것으로 나타나 동화양분의 전류가 되지 않은 것으로 추정되었다. 따라서 최근에 국내의 멜론재배지에서 급속하게 발생하고 있는 황화엽 증상은 생리적인 원인보다는 진딧물에 의한 바이러스 이병에 의한 원인이 더 큰 것으로 판단되며 황화엽 증상의 피해와 확산을 줄이기 위해서는 바이러스 매개충인 진딧물을 사전에 방제하는 것이 좋을 것으로 판단된다.

Keywords

References

  1. Abou-Jawdah, Y., H. Sobh, A. Fayyad, and H. Lecoq. 1997. First report of cucurbit aphid-borne yellows luteovirus in Lebanon. Plant Dis. 81:1331. (Abstr.)
  2. Avgelis, A.D. and N. Katis. 1989. Occurrence of squash mosaic virus in melons in Greece. Plant Pathol. 38:111-113. https://doi.org/10.1111/j.1365-3059.1989.tb01436.x
  3. Bateson, M.F., J. Henderson, W. Chaleeprom, A.J. Gibbs, and J.L. Dale. 1994. Papaya ringspot potyvirus: isolate variability and the origin of PRSV type P (Australia). J. Gen. Virol. 5:3547-3553.
  4. Berridge, M.V., P.M. Herst, and A.S. Tan. 2005. Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. p. 127-152. In: M.R. EI-Gewely (ed.). Biotechnol. Annu. Rev. Elsevier.
  5. Carver, T., U. Bohme, T.D. Otto, J. Parkhill, and M. Berriman. 2010. BamView: viewing mapped read alignment data in the context of the reference sequence. Bioinformatics 6:676-677.
  6. Chang, S.C. 1973. Compounding of Luft's epon embedding medium for use in electron microscopy with reference to anhydride: Epoxide ratio adjustment. Mikroskopie 29:337-342.
  7. Choi, G.S. 2001. Occurrence of two tobamovirus diseases in cucurbits and control measures in Korea. Plant Pathol. J. 17:243-248.
  8. Choi, G.S., J.H. Kim, and J.S. Kim. 2003. Characterization of Melon necrotic spot virus isolated from muskmelon. Plant Pathol. J. 19:123-127. https://doi.org/10.5423/PPJ.2003.19.2.123
  9. Dahal, G., H. Lecoq, and S.E. Albrechtsen. 1997. Occurrence of papaya ringspot potyvirus and cucurbit viruses in Nepal. Ann. Appl. Biol. 130:491-502. https://doi.org/10.1111/j.1744-7348.1997.tb07677.x
  10. Diaz-Pendon, J.A., R. Fernandez-Munoz, M.L. Gomez-Guillamon, and E. Moriones, 2005. Inheritance of resistance to Watermelon mosaic virus in Cucumis melo that impairs virus accumulation, symptom expression, and aphid transmission. Phytopathology 95:840-846. https://doi.org/10.1094/PHYTO-95-0840
  11. Dukic, N., B. Krstic, I. Vico, N.I. Katis, C. Papavassiliou, and J. Berenji. 2002. Biological and serological characterization of viruses of summer squash crops in Yugoslavia. J. Agric. Sci. 47:149-160.
  12. Enzie, W.D. 1943. A source of muskmelon mosaic resistance found in the oriental pickling melon, Cucumis melo var. conomon. Proc. J. Am. Soc. Hortic. Sci. 43:195-198.
  13. Epel, B.L. 2009. Plant viruses spread by diffusion on ER-associated movement-protein-rafts through plasmodesmata gated by viral induced host ${\beta}$-1,3-glucanases. Semin. Cell Dev. Biol. 20:1074-1081. https://doi.org/10.1016/j.semcdb.2009.05.010
  14. Grafton-Cardwell, E.E., T.M. Perring, R.F. Smith, J. Valencia, and C.A. Farrar. 1996. Occurrence of mosaic viruses in melons in the central valley of California. Plant Dis. 80:1092-1097. https://doi.org/10.1094/PD-80-1092
  15. Guilley, H., C. Wipf-Scheibel, K. Richards, H. Lecoq, and G. Jonard. 1994. Nucleotide sequence of Cucurbit aphid-borne yellows luteovirus. Virology 202:1012-1017. https://doi.org/10.1006/viro.1994.1429
  16. Juarez, M. 2004. First report of Cucurbit aphid-borne yellows virus in Spain. Plant Dis. 88:907. (Abstr.)
  17. Kim, J.S., S.H. Lee, H.S. Choi, G.S. Choi, J.D. Cho, and B.N. Chung. 2008. Survey of viral iseases occurrence on major crops in 2007. Res. Plant Dis. 14:1-9 (ln Korean). https://doi.org/10.5423/RPD.2008.14.1.001
  18. Kim, J.S., S.H. Lee, H.S. Choi, M.K. Kim, H.R. Kwak, J.S. Kim, M. Nam, J.D. Cho, I.S. Cho, and G.S. Choi. 2012. 2007-2011 Characteristics of plant virus infections on crop samples submitted from agricultural places. Res. Plant Dis. 18:277-289. https://doi.org/10.5423/RPD.2012.18.4.277
  19. Langmead, B. and S.L. Salzberg. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9:357-359. https://doi.org/10.1038/nmeth.1923
  20. Lecoq, H. 1999. Epidemiology of Cucurbit aphid-borne yellows virus, p. 243-248. In: H.G. Smith and H. Barker (eds.). The Luteoviridae. CAB International, Wallingford, UK.
  21. Lecoq, H., C. Desbiez, C. Wipf-Scheibel, and M. Girard. 2003. Potential involvement of melon fruit in the long distancedissemination of cucurbit potyviruses. Plant Dis. 87:955-959. https://doi.org/10.1094/PDIS.2003.87.8.955
  22. Lecoq, H., and C. Desbiez. 2012. Chapter 3 - Viruses of cucurbit crops in the Mediterranean region: an ever-changing picture, p. 67-126. In: L. Gad and L. Herve (eds.). Adv. Virus Res. Academic Press.
  23. Lemaire, O., W.D. Gubler, J. Valencia, H. Lecoq, and B.W. Falk. 1993. First report of Cucurbit aphid-borne yellows virus in the United States. Plant Dis. 77:1169. (Abstr.)
  24. Lee, J.H., J.K. Kwon, S.S. Park, Y.C. Huh, C.I. Lim, D.K. Park, and K.D. Ko. 2009. Effect of different rootstocks on wilting occurrence, plant growth, and fruit quality of melon. Kor. J. Hort. Sci. Technol. 27:211-217.
  25. Lee, J.Y., X. Wang, C. Weier, S. Ross, M. Shannon, C. Kirk, Z. Boris, W. Klaas van, Z. Chong, L. Hua, and L. Venkatachalam. 2011. A plasmodesmata-localized protein mediates crosstalk between cell-to-cell communication and innate immunity in Arabidopsis. Plant Cell 23:3353-3373. https://doi.org/10.1105/tpc.111.087742
  26. Lee, J.Y. 2014. New and old roles of plasmodesmata immunity and parallels to tunneling nanotubes. Plant Science 221-222:13-20. https://doi.org/10.1016/j.plantsci.2014.01.006
  27. Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, and R. Durbin. 2009. The sequence alignment/map format and SAM tools. Bioinformatics 25:2078-2079. https://doi.org/10.1093/bioinformatics/btp352
  28. McKenna, A., M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky, and M.A. DePristo. 2010. The Genome Analysis Toolkit: a Map reduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20:1297-1303. https://doi.org/10.1101/gr.107524.110
  29. Mnari, H.M., J. Kummert, S. Russel, K. Ezzaier, A. Zouba, and M.H. Jijakli. 2005. First report of Cucurbit aphid-borne yellows virus in Tunisia causing yellows on five cucurbitaceous species. Plant Dis. 89:776. (Abstr.)
  30. Moon, J.H. 2001. Physiological responses of cucumber to root-zone temperature. PhD. Diss., Seoul National Univ., Seoul, Korea.
  31. NIAST. 2000. Methods of soil chemical analysis. National Institute of Agricultural Science and Technology, RDA, Suwon, Korea.
  32. Omar, A.F. and N.A. Bagdady. 2012. Cucurbit aphid-borne yellows virus in Egypt. Phytoparasitica 40:177-184. https://doi.org/10.1007/s12600-011-0212-2
  33. Papayiannis, L.C., N. Ioannou, I.N. Boubourakas, C.I. Dovas, N.I. Katis, and B.W. Falk. 2005. Incidence of viruses infecting cucurbits in Cyprus. J. Phytopathol. 153:530-535. https://doi.org/10.1111/j.1439-0434.2005.01015.x
  34. Park D.K., S.H. Son, K.R. Do, W.M. Lee, and H.J. Lee. 2011. Effects of leaf chlorosis on the melon fruits and growing. Kor. J. Hort. Sci. Technol. 29:66-67. (Abstr.)
  35. Rajamony, L., T.A. More, V.S. Seshadri, and A. Varma. 1987. Resistance to Cucumber Green Mottle Mosaic Virus (CGMMV) in Muskmelon. Cucurbit Gen. Coop. Rep. 10:58-59. (Abstr.)
  36. Ryu, S.H. 2009. List of Plant Diseases in Korea. 800-805.
  37. Takeshita, S. 2004. Melons, p. 375-379. Vegetable gardening encyclopedia. Rural Culture Association Japan.
  38. Tamura, K., G. Stecher, D. Peterson, A. Filipski, and S. Kumar. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30:2725-2729. https://doi.org/10.1093/molbev/mst197
  39. Tan, S.H., M. Nishiguchi, M. Murata, and F. Motoyoshi. 2000. The genome structure of kyuri green mottle mosaic tobamovirus and its comparison with that of cucumber green mottle mosaic tobamovirus. Arch. Virol. 145:1067-1079. https://doi.org/10.1007/s007050070110
  40. Tomassoli L. and M. Meneghini. 2007. First report of cucurbit aphidborne yellows virus in Italy. Plant Pathol. 56:720. (Abstr.)
  41. Vucurovic, A., A. Bulajic, I. Ekic, D. Ristic, J. Berenji, and B. Krstic. 2009. Presence and distribution of oilseed pumpkin viruses and molecular detection of Zucchini yellow mosaic virus. Pestic. Fitomed. 24:85-94. https://doi.org/10.2298/PIF0902085V
  42. Xiang, H.Y., Q.X. Shang, C.G. Han, D.W. Li, and J.L. Yu. 2008. Complete sequence analysis reveals two distinct poleroviruses infecting cucurbits in China. Arch. Virol. 153:1155-1160. https://doi.org/10.1007/s00705-008-0083-0

Cited by

  1. vol.6, pp.2167-8359, 2018, https://doi.org/10.7717/peerj.5642