DOI QR코드

DOI QR Code

심전도 신호에서 QRS 군의 왜곡에 기반한 PVC 검출

PVC Detection Based on the Distortion of QRS Complex on ECG Signal

  • Lee, SeungMin (Kyungpook National University Graduate School of Electronics Engineering) ;
  • Kim, Jin-Sub (Kyungpook National University Graduate School of Electronics Engineering) ;
  • Park, Kil-Houm (Kyungpook National University Department of Information Security)
  • 투고 : 2014.12.11
  • 심사 : 2015.03.18
  • 발행 : 2015.04.30

초록

부정맥 심전도 신호에는 전도장애 및 발생부위에 따라 다양한 비정상 모양을 띄는 특이심박들이 포함되어 있고, 이들 특이심박은 부정맥 등의 심장질환을 진단하는데 있어 매우 중요하다. 본 논문에서는 심실질환에 관련한 PVC 특이심박 검출 알고리즘을 제안한다. PVC 특이심박에서는 심전도 신호의 구성요소 가운데 QRS 군의 왜곡이 발생하는 특징이 있다. 따라서 QRS 군의 왜곡 정도에 따라 PVC 특이심박을 검출할 수 있다. 먼저 R-peak의 전위, 첨도, 주기를 사용하여 QRS 군의 왜곡을 정량화하고, 이들 값들의 평균과 표준편차를 이용하여 정상 심박과의 왜곡의 정도에 따라 PVC 특이심박을 검출한다. 제안한 알고리즘은 MIT-BIH 부정맥 데이터베이스 중 심실질환과 관계되는 AAMI-V class 타입의 특이심박을 평균 98% 이상을 검출할 수 있었다.

In arrhythmia ECG signal, abnormal beat that has various abnormal shape depending on the generation site and conduction disorders is included and it is very important to diagnose heart disease such as arrhythmia. In this paper, we propose a PVC abnormal beat detection algorithm associated with ventricular disease. The PVC abnormal beat is characterized by distortion of the QRS complex occurs among the components of the ECG signal. Therefore it is possible to detect PVC abnormal beat according to the degree of distortion of the QRS complex. First, quantify the distortion of the QRS complex by using the potential of the R-peak, kurtosis and period. By using the mean and standard deviation, PVC abnormal beat is detected depending on the degree of distortion from the normal beat. The proposed algorithm can detect the average over 98% of the AAMI-V class type abnormal beat associated with ventricular disease in MIT-BIH arrhythmia database.

키워드

참고문헌

  1. M. Llamedo and J. Martinez, "Heartbeat classification using feature selection driven by database generalization criteria," IEEE Trans. Biomed. Eng., vol. 58, no. 3, pp. 616-625, Mar. 2011. https://doi.org/10.1109/TBME.2010.2068048
  2. S. O. Kim, "Arrhythmia detection using rhythm features of ECG Signal," J. The Korea Soc. Comput. Inf., vol. 18, no. 8, pp. 131-139, Aug. 2013. https://doi.org/10.9708/jksci.2013.18.8.131
  3. K. H. Park, J. S. Kim, C. H. Ryu, B. J. Choi, and J. J. Kim, "Unusual waveform detection algorithm in arrhythmia ECG signal," J. Korean Inst. Intell. Syst., vol. 23, no. 4, pp. 292-297, Aug. 2013. https://doi.org/10.5391/JKIIS.2013.23.4.292
  4. S. M. Lee, T. H. Kim, and K. H. Park, "Sequential defect detection according to defect possibility in TFT-LCD panel image," J. Inst. Electron. Eng. Korea, vol. 51, no. 4, pp. 123-130, Apr. 2014.
  5. R. J. Huszar, Basic dysrhythmias: interpretation & management, Mosby, 2007.
  6. J. Pan and W. Tompkins, "A real-time QRS detection algorithm," IEEE Trans. Biomed. Eng., vol. 32, no. 3, pp. 230-236, Mar. 1985.
  7. D. S. Benitez, et al., "A new QRS detection algorithm base on the Hilbert transform," Computers in Cardiology of IEEE, vol. 27 pp. 379-382, Cambridge, MA, Sept. 2000.
  8. C. Li, C. Zheng, and C. tai, "Detection of ECG characteristic points using wavelet transforms," IEEE Trans. Biomed. Eng., vol. 32, pp. 21-28, Jan. 1995.
  9. I. S. Cho and H. S. Kwon, "Advanced R wave detection algorithm using wavelet and adaptive threshold," J. KICS, vol. 35, no. 10, pp. 840-846, Oct. 2010.
  10. I. S. Cho and H. S. Kwon, "R wave detection algorithm based adaptive variable threshold and window for PVC classification," J. KICS, vol. 34, no. 11, pp. 1289-1295, Nov. 2009.
  11. J. J. Kim, J. S. Kim, and K. H. Park, "R-wave detection algorithm in ECG Signal using adaptive refractory period," J. IEEK, vol. 50, no. 5, pp. 242-250, May 2013.
  12. G. Moody and R. Mark, "The impact of the MIT-BIH arrhythmia database," IEEE Eng. Med. and Biol., vol. 20, no. 3, pp. 45-50, May-Jun. 2001. https://doi.org/10.1109/51.932724
  13. Testing and Reporting Performance Results of Cardiac Rhythm and ST Segment Measurement Algorithms, Association for the Advancement of Medical Instrumentation, Arlington, VA, 1998.
  14. S. W. Kim, S. Y. Kim, T. H. Kim, B. J. Choi, and K. H. Park, "Minimizing algorithm of baseline wander for ECG signal using morphology-pair," J. Korean Inst. Intell. Syst., vol. 20, no. 4, pp. 574-579, Aug. 2010. https://doi.org/10.5391/JKIIS.2010.20.4.574

피인용 문헌

  1. 심전도 신호에서 QRS군의 단계적 검출 vol.41, pp.2, 2015, https://doi.org/10.7840/kics.2016.41.2.244
  2. 줄기세포재생 치료를 위한 배지의 전압 반응 실험 vol.41, pp.7, 2015, https://doi.org/10.7840/kics.2016.41.7.809
  3. 평활화 스플라인 연산과 형태학 연산을 이용한 기저선 변동 잡음 제거 vol.42, pp.1, 2015, https://doi.org/10.7840/kics.2017.42.1.162