Abstract
In this paper, a location tracking compensation algorithm based on the Least-Squares Method ($LCA_{LSM}$) was proposed to improve the autonomous tracking efficiency for the docent robot in exhibition hall, and the performance of the $LCA_{LSM}$ is analyzed by several practical experiments. The proposed $LCA_{LSM}$ compensates the collected location coordinates for the robot using the Least-Squares Method (LSM) in order to reduce the cumulated errors that occur in the Encoder/Giro sensor (E/G) and to enhance the measured tracking accuracy rates in the autonomous tracking of the robot in exhibition hall. By experiments, it was confirmed that the average error reduction rates of the $LCA_{LSM}$ are higher as 4.85% than that of the $LCA_{KF}$ in Scenario 1 (S1) and Scenario 2 (S2), respectively on the location tracking. In addition, it was also confirmed that the standard deviation in the measured errors of the $LCA_{LSM}$ are much more low and constant compared to that of the E/G sensor and the $LCA_{KF}$ in S1 and S2 respectively. Finally, we see that the suggested $LCA_{LSM}$ can execute more the stabilized location tracking than the E/G sensors and the $LCA_{KF}$ on the straight lines of S1 and S2 for the docent robot.
본 논문에서는 전시장에 사용되는 도슨트 로봇 (Docent Robot)의 자율주행 정밀도 향상을 위하여 최소자승법을 적용한 위치추적 보정 알고리즘 (Location tracking Compensation Algorithm based on Least-Squares Method, $LCA_{LSM}$)을 제안하고, 도슨트 로봇을 사용한 실험을 통하여 그 성능을 분석하였다. 제안한 $LCA_{LSM}$은 전시장에서 도슨트 로봇의 자율주행에서 엔코더/자이로 (encoder/gyro, E/G)에서 발생하는 누적오차를 줄이고 위치추적 정확도를 개선하기 위하여 수집된 로봇의 위치좌표를 최소자승법 (Least-Squares Method, LSM)에 적용하여 보정한다. 실험결과, 제안한 $LCA_{LSM}$의 위치추적 평균 오차 감소율은 시나리오 1 (S1) 및 시나리오 2 (S2)에서 $LCA_{KF}$(Location tracking Compensation Algorithm based on Kalman Filter, $LCA_{KF}$) 보다 4.85% 더 높음을 확인하였다. 또한, 제안한 $LCA_{LSM}$의 측정오차에 따른 표준 편차는 S1 및 S2에서 E/G와 $LCA_{KF}$에 비해 훨씬 낮을 뿐 아니라 균일함을 확인하였다. 따라서 제안한 $LCA_{LSM}$은 도슨트 로봇이 S1 및 S2의 직선 이동을 할 때 E/G 및 $LCA_{KF}$ 보다 더 안정적임을 알 수 있다.