DOI QR코드

DOI QR Code

거대 다중 안테나 시스템을 위한 넌컨벡스 압축센싱 기반채널 정보 피드백 기법

Channel State Information Feedback Scheme Based on Non-Convex Compressed Sensing for Massive MIMO Systems

  • Kim, Jung-Hyun (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Kim, Inseon (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Park, Jin Soo (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Song, Hong-Yeop (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Han, Sung Woo (Agency for Defense Development)
  • 투고 : 2015.02.13
  • 심사 : 2015.04.08
  • 발행 : 2015.04.30

초록

본 논문은 거대 다중 안테나 시스템을 위한 넌컨백스 압축센싱 기반 채널 상태 정보 피드백 기법을 제안한다. 제안하는 피드백 기법은 랜덤 백터 양자화 방식과 결합하여, 피드백 양을 줄이면서 송신단에서 정확한 채널 정보를 획득할 수 있게 해준다. 또한, 측정값이 부정확하고 불완전하더라도 기존의 컨백스 압축센싱 기반 채널 상태정보 피드백 기법보다 더 적은 수의 측정값만으로 채널 상태 정보를 복구할 수 있다. 실험을 통해 제안하는 넌컨백스 압축센싱 기반 피드백 기법이 기존의 압축센싱 기반 피드백 기법과 랜덤 백터 양자화 피드백 기법에 비해 같은 피드백 양으로 더 높은 전송률을 제공함을 확인하였다.

In this paper, we propose a non-convex compressed sensing(NCCS)-based channel state information(CSI) feedback scheme for massive multiple-input multiple-output(MIMO) systems. Combining the random vector quantization(RVQ), the proposed scheme permits a transmitter to obtain CSI with acceptable accuracy under substantially reduced feedback load. Furthermore, it recovers CSI from fewer measurements than that of existing convex compressed sensing(CCS)-based schemes even if the measurements are inaccurate and incomplete. Simulation results show that the proposed scheme achieves higher throughput than both existing CCS-based feedback scheme and random vector quantization(RVQ) feedback scheme with the same feedback load.

키워드

참고문헌

  1. T. L. Marzetta, "Noncooperative cellular wireless with unlimited numbers of base station antennas," IEEE Trans. Wirel. Commun., vol. 9, no. 11, pp. 3590-3600, Nov. 2010. https://doi.org/10.1109/TWC.2010.092810.091092
  2. F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, O. Edfors, and F. Tufvesson, "Scaling up MIMO: Opportunities and challenges with very large arrays," IEEE Signal Process. Mag., vol. 30, no. 1, pp. 40-60, Jan. 2013. https://doi.org/10.1109/MSP.2011.2178495
  3. C. K. Au-Yeung and D. J. Love, "On the performance of random vector quantization limited feedback beamforming in a MISO system," IEEE Trans. Wirel. Commun., vol. 6, no. 2, pp. 458-462, Feb. 2007. https://doi.org/10.1109/TWC.2007.05351
  4. I.-G. Choi, H.-D. Nho, and C.-Y. Lee, "A codebook generation and search scheme for FDD downlink massive MIMO systems," J. KICS, vol. 38A, no. 08, Aug. 2013.
  5. E. Candes, J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 489-509, Feb. 2006. https://doi.org/10.1109/TIT.2005.862083
  6. R. G. Baraniuk, "Compressive sensing," IEEE Signal Process. Mag., vol. 24, no. 4, pp. 118-124, Jul. 2007. https://doi.org/10.1109/MSP.2007.4286571
  7. M. E. Eltayeb, T. Y. AI-Naffouri, and H. R. Bahrami, "Compressive sensing for feedback reduction in MIMO broadcast channels," IEEE Trans. Commun., vol. 62, no. 9, pp. 3209- 3222, Sept. 2014. https://doi.org/10.1109/TCOMM.2014.2347964
  8. H. Song, W. Seo, and D. Hong, "Compressive feedback based on sparse approximation for multiuser MIMO systems," IEEE Trans. Veh. Technol., vol. 59, no. 2, pp. 1017-1023, Feb. 2010. https://doi.org/10.1109/TVT.2009.2035042
  9. P. Kuo, H. T. Kung, and P. Ting, "Compressive sensing based channel feedback protocols for spatially-correlated massive antenna arrays," in Proc. IEEE Wirel. Commun. Netw. Conf. (WCNC), pp. 492-497, Apr. 2012.
  10. Y.-G. Lim and C.-B. Chae, "Limited feedback precoding for correlated massive MIMO systems," J. KICS, vol. 39A, no. 07, Jul. 2014.
  11. R. Saab and O. Yilmaz, "A short note on non-convex compressed sensing," in Proc. Sampling Theory and Appl. (SAMPTA), pp. 135-138, May 2009.
  12. R. Saab and O. Yilmaz, "Sparse recovery by nonconvex optimization instance optimality," Appl. Comput. Harmonic Anal., vol. 29, no. 1, pp. 30-48, Jul. 2010. https://doi.org/10.1016/j.acha.2009.08.002
  13. K. Kazimierczuk and V. Y. Orekhov, "A comparison of convex and nonconvex compressed sensing applied to multidimensional NMR," J. Magnetic Resonance, vol. 223, pp. 1-10, Oct. 2012. https://doi.org/10.1016/j.jmr.2012.08.001
  14. B. Nosrat-Makouei, J. G. Andrews, and R. W. Heath, Jr., "MIMO interference alignment over correlated channels with imperfect CSIT," IEEE Trans. Signal Process., vol. 59, no. 6, pp. 2783-2794, Jun. 2011. https://doi.org/10.1109/TSP.2011.2124458
  15. E. Candes, J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 489-509, Feb. 2006. https://doi.org/10.1109/TIT.2005.862083
  16. S. Wagner, R. Couillet, M. Debbah, and D. T. M. Slock, "Large system analysis of linear precoding in correlated MISO broadcast channels under limited feedback," IEEE Trans. Inf. Theory, vol. 58, no. 7, pp. 4509-4537, Jul. 2012. https://doi.org/10.1109/TIT.2012.2191700
  17. D. L. Donoho, "Compressed sensing," IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1289-1306, Apr. 2006. https://doi.org/10.1109/TIT.2006.871582
  18. E. Candes and T. Tao, "Near optimal signal recovery from random projections: universal encoding strategies?," IEEE Trans. Inf. Theory, vol. 52, no. 12, pp. 5406-5425, Dec. 2006. https://doi.org/10.1109/TIT.2006.885507
  19. R. Chartrand, "Exact reconstruction of sparse signals via nonconvex minimization," IEEE Signal Process. Lett., vol. 14, no. 10, pp. 707-710, Oct. 2007. https://doi.org/10.1109/LSP.2007.898300
  20. R. Chartrand and V. Staneva, "Restricted isometry properties and nonconvex compressive sensing," Inv. Probl., vol. 24, no. 3, pp. 1-14, 2008.
  21. I. Daubechies, R. DeVore, M. Fornasier, and C. S. Gunturk, "Iteratively reweighted least squares minimization for sparse recovery," Commun. Pure Appl. Math., vol. 63, no. 1, pp. 1-38, Jan. 2010. https://doi.org/10.1002/cpa.20303
  22. R. Chartrand and W. Yin, "Iteratively reweighted algorithms for compressive sensing," in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), pp. 3869- 3872, Apr. 2008.
  23. N. Jindal, "MIMO broadcast channels with finite-rate feedback," IEEE Trans. Inf. Theory, vol. 52, no. 11, pp. 5045-5060, Nov. 2006. https://doi.org/10.1109/TIT.2006.883550
  24. M. Jung and S. Choi, "Optimal number of base station antennas and users in MF based multiuser massive MIMO systems," J. KICS, vol. 38A, no. 08, Aug. 2013.

피인용 문헌

  1. OFDM 시스템에서 측정 벡터 결합을 이용한 채널 추정 방법 vol.41, pp.1, 2015, https://doi.org/10.7840/kics.2015.41.1.1
  2. 주파수 분할 방식의 거대 다중 안테나 시스템을 위한 빔형성 기반의 채널상태정보 기준신호 전송기술 vol.41, pp.5, 2015, https://doi.org/10.7840/kics.2016.41.5.520