DOI QR코드

DOI QR Code

Prediction of Reservoir Properties Using Extended Elastic Impedance Inversion

확장 탄성 임피던스 역산을 이용한 저류층 물성 예측

  • Kim, Hyeonju (Department of Energy Resources Engineering, Pukyong National University) ;
  • Lee, Gwang H. (Department of Energy Resources Engineering, Pukyong National University) ;
  • Moon, Seonghoon (Department of Energy Resources Engineering, Pukyong National University)
  • 김현주 (부경대학교 에너지자원공학과) ;
  • 이광훈 (부경대학교 에너지자원공학과) ;
  • 문성훈 (부경대학교 에너지자원공학과)
  • Received : 2014.12.12
  • Accepted : 2015.03.20
  • Published : 2015.04.28

Abstract

Extended elastic impedance (EEI) is an extension of elastic impedance (EI) which is a generalization of acoustic impedance (AI) for nonzero angles of incidence and can be tuned to be proportional to reservoir properties. In this study, we evaluated EEI inversion by estimating the P-($V_p$) and S-wave velocities ($V_s$), P-wave to S-wave velocity ratio ($V_p/V_s$), and Poisson's ratio of the Second Wall Creek Sand of the Teapot Dome field, Wyoming, USA. We also applied the EEI inversion technique to estimate porosity, gamma-ray values, and density of the Second Wall Creek Sand. Data used in the study include 3-D pre-stack seismic data from the southern part of the field and four wells, selected from a large well database. The $V_s$ logs at the wells were constructed from the $V_p$ logs using the empirical relationships. The percent prediction errors for the four velocity properties are less than about 5% except for Poisson's ratio at one well, supporting that the EEI inversion can be used in the prediction of rock properties. However, the results from the EEI inversion analysis of porosity, gamma-ray values, and density at the wells were unsatisfactory and thus these properties, which are not directly computed from velocities, may not be suitable for EEI inversion.

확장 탄성 임피던스(extended elastic impedance, EEI)는 입사각에 따른 음향 임피던스(acoustic impedance, AI) 를 일반화한 탄성 임피던스(elastic impedance, EI)를 확장한 개념으로서 다양한 저류암 물성과 대비가 가능한 것으로 알려져 있다. 하지만 EEI 역산을 적용하여 예측한 저류암적 물성이 실제 물성을 얼마나 정확히 예측하는지를 검증한 사례는 거의 없다. 본 연구에서는 EEI 역산 기법을 이용하여 미국 와이오밍주 Teapot Dome 유전의 주요 저류층 중 하나인 Second Wall Creek 사암층의 P파속도($V_p$), S파속도($V_s$), P파속도-S파속도 비($V_p/V_s$), 포아송비(Poisson's ratio)와 같은 속도 물성들을 유추하고 실제 물리검층 자료와 비교하여 EEI 역산 기법의 정확도를 검증했다. 사용된 자료는 Teapot Dome 유전 남부의 3차원 공심점 모음 자료(CDP gather)와 많은 시추공에서 선택된 4개의 시추공 자료이다. $V_s$ 검층자료는 경험식을 통해 $V_p$ 검층자료로부터 계산되었다. 4개의 속도 물성 EEI 예측 %에러는 한 시추공에서의 포아송비를 제외하면 약 5%를 넘지 않는다. 그러나 속도로부터 직접적으로 계산되지 않는 공극률, 감마선 검층값, 밀도와 같은 물성들은 시추공에서의 EEI 역산 분석 결과가 만족스럽지 못하여 전체 자료에 EEI 역산을 적용할 수 없었다. 따라서 속도 물성의 경우 EEI 역산을 적용할 수 있지만 속도로부터 직접 계산이 되지 않는 물성의 경우는 EEI 역산 적용에 신중해야 할 것으로 판단된다.

Keywords

References

  1. Aktepe, S. (2007) Depth imaging of basement control of shallow deformation: application to Fort Worth Basin and Teapot Dome data sets. MS thesis, University of Houston, 184p.
  2. Arsalan, S.I. and Yadav, A. (2009) Application of extended elastic impedance: A case study from Krishna-Godavari Basin, India. The Leading Edge, v.28, p.1204-1209. https://doi.org/10.1190/1.3249775
  3. Asquith, G. and Krygowski, D. (2004) Basic Well Log Analysis. American Association of Petroleum Geologists, Methods in Exploration Series 16, 216p.
  4. Awosemo, O.O. (2012) Evaluation of elastic impedance attributes in offshore High Island, Gulf of Mexico. MS thesis, University of Houston, 96p.
  5. Blackstone Jr., D.L. (1980) Foreland deformation: compression as a cause. Rocky Mountain Geology, v.18, p.83-101.
  6. Canales, L.L. (1984) Random noise reduction. 54th Annual International Meeting, SEG, Expanded Abstracts, p.525-527.
  7. Castagna, J.P., Batzle, M.L. and Eastwood, R.L. (1985) Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks. Geophysics, v.50, p.571-581 https://doi.org/10.1190/1.1441933
  8. Connolly, P. (1999) Elastic impedance. The Leading Edge, 18, p.438-452. https://doi.org/10.1190/1.1438307
  9. Curry Jr., W.H. (1997) Teapot Dome, Past, Present and Future. The American Association of Petroleum Geologists Bulletin, v.61, p.671-697.
  10. Dennen, K., Burns, W., Burruss, R. and Hatcher, K. (2005) Geochemical Analyses of Oils and Gases, Naval Petroleum Reserve No. 3, Teapot Dome Field, Natrona County, Wyoming. USGS Open-File Report 2005-1575, 69p.
  11. Dewan, J. (1983) Essentials of Modern Open-Hole Log Interpretation. PennWell Publication, Tulsa, Oklahoma, 351p.
  12. Dickinson, W.R., Klute, M.A., Hayes, M.J., Janecke, S.U., Ludin, E.R., McKittrick, M.A. and Olivares, M.D. (1988) Paleogeographic and paleotectonic setting of Laramide sedimentary basins in the central Rocky Mountain region. Geological Society of America Bulletin, v.100, p.1023-1039. https://doi.org/10.1130/0016-7606(1988)100<1023:PAPSOL>2.3.CO;2
  13. Dolton, G.L. and Fox, J.E. (1996) Powder River Basin Province (033). In Gautier, D.L., Dolton, G.L., Takahashi, K.I. and Varnes, K.L. (eds.), 1995 National Assessment of United States Oil and Gas resources- Result, Methodology and Supporting Data, U.S. Geological Survey Digital Data Series DDS-30, CD ROM edition.
  14. Fausnaugh, J.M. and Lebeau, J. (1997) Characterization of shallow hydrocarbon reservoirs using surface geochemical methods. American Association of Petroleum Geologists Bulletin, v.81, p.12-23.
  15. Friedmann, S.J. and Stamp, V.W. (2006) Teapot Dome: Characterization of a $CO_2$-enhanced oil recovery and storage site in Eastern Wyoming. Environmental Geosciences, v.13, p.181-199. https://doi.org/10.1306/eg.01200605017
  16. Friedmann, S.J., McCutcheon, T., Nummedal, D., Milliken, M., Stamp, V. and Klusman, R. (2004) Goals and configuration of an induced $CO_2$ leakage experiment at Teapot Dome, WY(http://www.netl.doe.gov/publications/proceedings/04/carbon-seq/162.pdf, accessed on Jan. 20, 2014)
  17. Greenberg, M.L. and Castagna, J.P. (1992) Shear-wave velocity estimation in porous rocks: theoretical formulation, preliminary verification and applications. Geophysical Prospecting, v.40, p.195-209. https://doi.org/10.1111/j.1365-2478.1992.tb00371.x
  18. Hamilton, W.B. (1988) Laramide crustal shortening. In Schmidt, C.J. and Perry W.J. (eds.), Interaction of the Rocky Mountain Foreland and Cordilleran Thrust Belt. Geological Society of America Memoir 171, p.27-39.
  19. Harris, J.M., Kovscek, A.R., Orr, Jr., F.M. and Zoback, M.D. (2005) Geologic $CO_2$ Sequestration. (http://gcep.stanford.edu/pdfs/orr_tech 05web.pdf, accessed on Oct. 10, 2014)
  20. Hilchie, D.W. (1989) Advanced Well Log Interpretation. Hilchie Press Inc., Golden, Colorado, 353p.
  21. Klusman, R.W. (2005) Baseline studies of surface gas exchange and soil-gas composition in preparation for $CO_2$ sequestration research: Teapot Dome, Wyoming. American Association of Petroleum Geologists Bulletin, v.89, p.981-1003. https://doi.org/10.1306/03310504109
  22. Lancaster, S. and Whitcombe, D. (2000) Fast-track 'coloured' inversion. 70th Annual International Conference and Exhibition, SEG, Expanded Abstracts, p.1572-1575.
  23. Lee, G.H., Yi, B.Y., Yoo, D.G., Ryu, B.J. and Kim, H.J. (2013) Estimation ofthe gas-hydrate resource volume in a small area of the Ulleung Basin, East Sea using seismic inversion and multi-attribute transform techniques. Marine and Petroleum Geology, v.47, p.291-302. https://doi.org/10.1016/j.marpetgeo.2013.04.001
  24. Neves, F.A., Mustafa, H.M., Rutty, P.M. and Saudi Aramco (2004) Pseudo-gamma ray volume from extended elastic impedance inversion for gas exploration. The Leading Edge, v.23, p.536-540. https://doi.org/10.1190/1.1766237
  25. Roth, M., Emanuel, J. and Anderson, T. (2005) Better understanding Wyoming reservoirs through co-visualization and analysis of 3D seismic, VSP and engineering data - Teapot Dome, Powder River Basin. Rocky Mountain Association of Geologists/Denver Geological Society 3D Seismic Symposium, p.1-5.
  26. Saleeby, J. (2003) Segmentation of the Laramide slab-evidence from the southern Sierra Nevada region. Geological Society of America Bulletin, v.115, p.655-668. https://doi.org/10.1130/0016-7606(2003)115<0655:SOTLSF>2.0.CO;2
  27. Schulte, R. (2002) Weatherford Inclined Wellbore Construction. DOERMOTC-020169, Rocky Mountain Oilfield Testing Center (RMOTC), 15p.
  28. Shuey, R.T. (1985) A simplification of the Zoeppritz equations. Geophysics, v.50, p.609-614. https://doi.org/10.1190/1.1441936
  29. Smith, M., Perry, G., Stein, J., Bertrand, A. and Yu, G. (2008) Extending seismic bandwidth using the continuous wavelet transform. First Break, v.26, p.97-102.
  30. Walden, A.T. and Hosken, J.W.J. (1985) An investigation of the spectral properties of primary reflection coefficients. Geophysical Prospecting, v.33, p.400-435. https://doi.org/10.1111/j.1365-2478.1985.tb00443.x
  31. Whitcombe, D.N. (2002) Elastic impedance normalization. Geophysics, v.67, p.60-62. https://doi.org/10.1190/1.1451331
  32. Whitcombe, D.N., Connolly, P.A., Reagan, R.L. and Redshaw, T.C. (2002) Extended elastic impedance for fluid and lithology prediction. Geophysics, v.67, p.63-67. https://doi.org/10.1190/1.1451337
  33. Yilmaz, O. (1987) Seismic Data Processing. Society of Exploration Geophysicists Investigation in Geophysics 2, 526p.