KYUNGPOOK Math. J. 55(2015), 219-224 http://dx.doi.org/10.5666/KMJ.2015.55.1.219 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

Hyperspaces and the S-equivariant Complete Invariance Property

SAURABH CHANDRA MAURY

Department of Mathematics, University of Allahabad, Allahabad-211 002, India e-mail: smaury940gmail.com

ABSTRACT. In this paper it is investigated as to when a nonempty invariant closed subset A of a S^1 -space X containing the set of stationary points (S) can be the fixed point set of an equivariant continuous selfmap on X and such space X is said to possess the S-equivariant complete invariance property (S-ECIP). It is also shown that if X is a metric space and S^1 acts on $X \times S^1$ by the action $(x, p) \cdot q = (x, p \cdot q)$, where $p, q \in S^1$ and $x \in X$, then the hyperspace $2^{X \times S^1}$ of all nonempty compact subsets of $X \times S^1$ has the S-ECIP.

1. Introduction

A topological space X is said to possess the complete invariance property (CIP) if each of its nonempty closed subsets is the fixed point set, for some self continuous map f on X [15]. In case, f can be found to be a homeomorphism, we say that the space enjoys the complete invariance property with respect to homeomorphism (CIPH) [7]. A detailed account of spaces possessing CIP or otherwise and various techniques classifying and determining these classes of spaces together with many results and their applications can be found in [5,7,8,9,10,12,13,14,15].

In [2] a space X is defined to have the S-equivariant complete invariance property (S-ECIP), if every nonempty invariant closed set containing the set of stationary points is a fixed point set of an equivariant continuous selfmap on X. In this paper it is shown that a metric space on which S^1 acts freely such that the orbits are equidistant to each other, possesses S-ECIP. This is a more general result than the Proposition 1.8 in [2] which says that if (X, d) is a metric space and S^1 is the unit circle group, then the product $X \times S^1$ has S-ECIP.

In the last section of this paper it is investigated that the hyperspace 2^X of nonempty compact subsets of a metric space X enjoys the notion of S-equivariant

Received March 24, 2013; accepted April 21, 2014.

²⁰¹⁰ Mathematics Subject Classification: 57Sxx, 55M20, 54H25, 54B20.

Key words and phrases: Equivariant map, Hyperspaces, Hausdorff metric, CIP, CIPH.

²¹⁹

complete invariance property (S-ECIP).

2. Pre-requisites

A. CIP and S-ECIP

By a space we mean a Hausdorff space and by a group, a topological group. A subset F of a space X is called a *fixed point set* of X, if there is a continuous selfmap f on X such that the set fix f of fixed points of f is F. A space X is defined to have the *complete invariance property* (CIP) if every nonempty closed subset of X is the fixed point set of a continuous selfmap on X.

If a topological group G acts continuously on a space X by the action '.', then we denote the *orbit* of $x \in X$ by $G_x = \{x \cdot g : g \in G\}$. A point $x \in X$ is called a *stationary point* of X if the orbit G_x is the singleton $\{x\}$. We use the symbol S for the set of all stationary points of X. A subset A of X is called an *invariant set*, if for $g \in G$ and $a \in A$, $a \cdot g \in A$.

Definition 2.1. Let X and Y be G-spaces. A continuous function $f : X \longrightarrow Y$ is said to be *equivariant*, if $f(x \cdot g) = f(x) \cdot g$, for $g \in G$ and $x \in X$.

Definition 2.2.([2]) A G-space X is said to possess the S-equivariant complete invariance property (S-ECIP), if every nonempty invariant closed set containing the set of stationary points is a fixed point set of an equivariant continuous selfmap on X.

Result 2.3.([7]) A space X has the CIPH if it satisfies the following conditions:

(i) S^1 acts on X freely.

(ii) X possesses a bounded metric such that each orbit is (arc length metric) isometric to S^1 .

Result 2.4.([2]) Let X be a metric space and S^1 act on $X \times S^1$ by the action $(x, p) \cdot q = (x, p \cdot q)$, where $p, q \in S^1$ and $x \in X$. Then $X \times S^1$ has S-ECIP.

B. Hyperspaces

For a topological space X, 2^X denotes the collection of all nonempty compact subsets of X. The set 2^X equipped with some topology is called a *hyperspace* of X. Among various topologies defined on 2^X , the *Vietoris topology* also called the *finite topology* or the *exponential topology* is one of the most well studied topologies on 2^X .

The sets of the form

$$\langle U_1, U_2, \dots, U_n \rangle = \{ K \in 2^X : K \subset \bigcup_{i=1}^n U_i \text{ and for all } 1 \le i \le n, \ K \cap U_i \ne \phi \},\$$

where $\{U_1, U_2, \ldots, U_n\}$ is a finite collection of open sets of X, form a *base* for the Vietoris topology on 2^X . In case, X is a metric space, the hyperspaces 2^X

of nonempty compact subsets of X can be metrized by the Hausdorff metric d_H , defined by

$$d_H(A, B) = \max\{\sup_{a \in A} d(a, B), \sup_{b \in B} d(b, A)\}$$

and the Vietoris topology coincides with the one introduced by the Hausdorff metric.

Result 2.5. The hyperspace 2^X is a compact metric space if and only if X is a compact metric space.

3. S-ECIP on Metric Spaces

Result 2.3 gives the information about the CIPH over a metric space X. After removing the condition (ii) from this result we get the following theorem.

Theorem 3.1. A metric space on which S^1 acts freely has the CIP.

Proof. Let (X, d) be a metric space with $d \leq 2\pi$ and let the map $\cdot : X \times S^1 \longrightarrow X$ be a free action.

For a nonempty closed subset A of X, define the map $f_A: X \longrightarrow X$ by

$$f_A(x) = x \cdot e^{\frac{i}{2}d(x, A)}.$$

Since the action '·' is free and $0 < \frac{1}{2}d(x, A) < 2\pi$ if $x \notin A$, we get fix $f_A = A$. \Box

Theorem 3.2. Let X be a metric space on which S^1 act freely such that the orbits are equidistant to each other. Then X has S-ECIP.

Proof. Let (X, d) be a metric space with $d \leq 2\pi$ and let the map $\cdot : X \times S^1 \longrightarrow X$ be a free action. By equidistant orbits to each other we mean, if O_1 and O_2 are two orbits in X then $d(x, O_2)$ is fixed for all $x \in O_1$ and equal to $d(x, O_1)$ for all $x \in O_2$. The set of stationary points of X is empty and orbits are homeomorphic to S^1 . If A is nonempty invariant closed subset of X, then A is union of some orbits. Consider the map $f_A : X \longrightarrow X$ as defined in the previous theorem. We have fix $f_A = A$.

Now, to prove that f_A is an equivariant map we show that

 $\begin{aligned} f_A(x \cdot p) &= f_A(x) \cdot p, \qquad p \in S^1 \\ \text{or,} \qquad & x \cdot p \cdot e^{\frac{i}{2}d(x \cdot p, A)} = x \cdot e^{\frac{i}{2}d(x, A)} \cdot p \\ \text{or,} \qquad & d(x \cdot p, A) = d(x, A). \end{aligned}$

Since $x \cdot p$ and x are in the same orbit and the orbits are equidistant to each other we get the result.

This proves that for any nonempty invariant closed subset A of X there exists an equivariant selfmap f_A on X whose fixed point set is A.

4. S-ECIP on Hyperspaces

Let G be a compact group, X a metrizable space and 2^X is a hyperspace of all nonempty compact subsets of X.

If $\cdot : X \times G \longrightarrow X$ is an action, then the map $* : 2^X \times G \longrightarrow 2^X$ defined by $*(A,g) = A * g = \{a \cdot g : a \in A\}$, where $g \in G$, $A \in 2^X$ is a continuous action[1]. That is if X is G-space, then 2^X is a G-space. This led to the following:

Theorem 4.1. Let X be a metric space and S^1 act on $X \times S^1$ by the action $(x, p) \cdot q = (x, p \cdot q)$, where $p, q \in S^1$ and $x \in X$. Then the hyperspace $2^{X \times S^1}$ of all nonempty compact subsets of $X \times S^1$ has S-ECIP.

Proof. Consider an equivalent metric $d_1 \leq 1$ on X and the arc length metric d_2 on S^1 . Then $X \times S^1$ is a metric space with the metric d, defined by

$$d^{2}((x, p), (y, q)) = d_{1}^{2}(x, y) + d_{2}^{2}(p, q),$$

where (x, p) and (y, q) are elements of $X \times S^1$.

Since S^1 is a compact group acting on the metric space $(X \times S^1, d)$, then the map $*: 2^{X \times S^1} \times S^1 \longrightarrow 2^{X \times S^1}$ defined by $*(A, q) = A * q = \{a \cdot g : a \in A\}$ is a continuous action.

The hyperspace $2^{X \times S^1}$ is a metric space, with the Hausdorff metric d_H . Metric d_H is bounded follows from below:

Since

$$d(a,B) = \inf_{(b_1,b_2)\in B} \sqrt{d_1^2(a_1,b_1) + d_2^2(a_2,b_2)} \le \sqrt{1 + (2\pi)^2}$$

where $a = (a_1, a_2) \in X \times S^1, (b_1, b_2) \in B$ and $B \in 2^{X \times S^1}$. We have

$$d_H(A, B) = \max\{\sup_{a \in A} d(a, B), \sup_{b \in B} d(b, A)\} \le \sqrt{1 + (2\pi)^2}.$$

The set of stationary points of the S^1 -space $2^{X \times S^1}$ is

$$S = \{C \times S^1 : C \text{ is a compact set in } X\}.$$

Let K be an invariant closed subset of $2^{X \times S^1}$ containing S. Define a map

$$f: 2^{X \times S^1} \longrightarrow 2^{X \times S^1}$$

by $f(A) = A * e^{ia(A)}$, where $A \in 2^{X \times S^1}$ and $a(A) = \frac{1}{2}d_H(A, K)$.

If $A \notin K$, then A is not an stationary point and $0 < a(A) < 2\pi$. Thus we get that fix f = K.

Now we show that the map f is equivariant. If $p \in S^1$, then

$$f(A) * p = A * e^{ia(A)} * p,$$

and

$$f(A*p) = A*p*e^{ia(A*p)}.$$

Since the invariant set K is a union of some orbits we have

$$d_H(A, K) = \inf_{S_B^1 \in K} d_H(A, S_B^1).$$

By noting that

$$d_H(A, S_B^1) = \inf_{q \in S^1} d_H(A, B * q) = \inf_{q \in S^1} d_H(A * p, B * q) = d_H(A * p, S_B^1)$$

we have

$$d_H(A, K) = \inf_{S_B^1 \in K} d_H(A, S_B^1) = \inf_{S_B^1 \in K} d_H(A * p, S_B^1) = d_H(A * p, K),$$

where S_B^1 is an orbit of B in the space $2^{X \times S^1}$.

Thus

$$a(A * p) = \frac{1}{2}d_H(A * p, K) = \frac{1}{2}d_H(A, K) = a(A)$$

shows that

$$f(A) * p = f(A * p),$$
 for all $p \in S^1$.

This proves that for each nonempty invariant closed subset K in $2^{X \times S^1}$ containing the set S of stationary points there exists an equivariant map f from $2^{X \times S^1}$ to $2^{X \times S^1}$ whose fixed point set is K.

Remark 4.2. We remark that in the above proof, $X \times S^1$ could be replaced by any space Y on which S^1 acts freely such that the orbits are equidistant to each other.

Acknowledgements. The author gratefully acknowledges the financial support provided by the CSIR, New Delhi, India.

References

- S. Antonyan, West's problem on equivariant hyperspaces and Banach-Mazur compacta, Trans. Amer. Math. Soc., 355(2003), 3379–3404.
- [2] K. K. Azad and K. Srivastava, On S-equivariant complete invariance property, Journal of the Indian Math. Soc., 62(1996), 2005–2009.
- [3] T. Banakh, R. Voytsitskyy, Characterizing metric spaces whose hyperspaces are absolute neighborhood retracts, Topology Appl., 154(2007), 2009–2025.
- [4] G. E. Bredon, Introduction to Compact Transformation Groups, Academic Press, New York, London, 1972.
- [5] A. Chigogidze, K. H. Hofmann and J. R. Martin, Compact groups and fixed point sets, Trans. Amer. Math. Soc., 349(1997), 4537–4554.
- [6] D. W. Curtis, Hyperspaces of noncompact metric spaces, Compositio Mathematica, 40(1980), 126–130.
- [7] J. R. Martin, Fixed point sets of homeomorphisms of metric products, Proc. Amer. Math. Soc., 103(1988), 1293-1298.
- [8] J. R. Martin and S. B. Nadler Jr., Examples and questions in the theory of fixed point sets, Canad. J. Math., 31(1997), 1017–1032.
- [9] J. R. Martin, L. G. Oversteegen and E. D. Tymchatyn, Fixed point sets of products and cones, Pacific J. Math., 101(1982), 133–139.

- [10] J. R. Martin and W. A. R. Weiss, Fixed point sets of metric and nonmetric spaces, Trans. Amer. Math. Soc., 284(1984), 337–353.
- [11] S. B. Nadler Jr., Hyperspaces of sets: A text with research questions, Monographs and Textbooks, Pure Appl. Math. 49, Marcel Dekker, New York and Basel, 1978.
- [12] H. Schirmer, Fixed point sets of continuous selfmaps, in: Fixed Point Theory, Conf. Proc., Sherbrooke, 1980, Lecture Notes in Math., 866(1981), 417–428.
- [13] H. Schirmer, Fixed point sets of homeomorphisms of compact surfaces, Israel J. Math., 10(1971), 373–378.
- [14] H. Schirmer, On fixed point sets of homeomorphisms of the n-ball, Israel J. Math., 7(1969), 46–50.
- [15] L. E. Ward Jr., Fixed point sets, Pacific J. Math., 47(1973), 553-565.