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Abstract. In this paper it is investigated as to when a nonempty invariant closed subset

A of a S1-space X containing the set of stationary points (S) can be the fixed point set

of an equivariant continuous selfmap on X and such space X is said to possess the S-

equivariant complete invariance property (S-ECIP). It is also shown that if X is a metric

space and S1 acts on X × S1 by the action (x, p) · q = (x, p · q), where p, q ∈ S1 and

x ∈ X, then the hyperspace 2X×S1

of all nonempty compact subsets of X × S1 has the

S-ECIP.

1. Introduction

A topological space X is said to possess the complete invariance property (CIP )
if each of its nonempty closed subsets is the fixed point set, for some self continuous
map f on X [15]. In case, f can be found to be a homeomorphism, we say that
the space enjoys the complete invariance property with respect to homeomorphism
(CIPH) [7]. A detailed account of spaces possessing CIP or otherwise and various
techniques classifying and determining these classes of spaces together with many
results and their applications can be found in [5,7,8,9,10,12,13,14,15].

In [2] a space X is defined to have the S-equivariant complete invariance prop-
erty (S-ECIP), if every nonempty invariant closed set containing the set of station-
ary points is a fixed point set of an equivariant continuous selfmap on X. In this
paper it is shown that a metric space on which S1 acts freely such that the orbits
are equidistant to each other, possesses S-ECIP. This is a more general result than
the Proposition 1.8 in [2] which says that if (X, d) is a metric space and S1 is the
unit circle group, then the product X × S1 has S-ECIP.

In the last section of this paper it is investigated that the hyperspace 2X of
nonempty compact subsets of a metric space X enjoys the notion of S-equivariant
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complete invariance property (S-ECIP).

2. Pre-requisites

A. CIP and S-ECIP

By a space we mean a Hausdorff space and by a group, a topological group.
A subset F of a space X is called a fixed point set of X, if there is a continuous
selfmap f on X such that the set fixf of fixed points of f is F . A space X is defined
to have the complete invariance property (CIP ) if every nonempty closed subset of
X is the fixed point set of a continuous selfmap on X.

If a topological group G acts continuously on a space X by the action ‘·’, then
we denote the orbit of x ∈ X by Gx = {x · g : g ∈ G}. A point x ∈ X is called a
stationary point of X if the orbit Gx is the singleton {x}. We use the symbol S for
the set of all stationary points of X. A subset A of X is called an invariant set, if
for g ∈ G and a ∈ A, a · g ∈ A.

Definition 2.1. Let X and Y be G-spaces. A continuous function f : X −→ Y is
said to be equivariant, if f(x · g) = f(x) · g, for g ∈ G and x ∈ X.

Definition 2.2.([2]) A G-space X is said to possess the S-equivariant complete
invariance property (S-ECIP), if every nonempty invariant closed set containing
the set of stationary points is a fixed point set of an equivariant continuous selfmap
on X.

Result 2.3.([7]) A space X has the CIPH if it satisfies the following conditions:

(i) S1 acts on X freely.

(ii) X possesses a bounded metric such that each orbit is (arc length metric)
isometric to S1.

Result 2.4.([2]) Let X be a metric space and S1 act on X × S1 by the action
(x, p) · q = (x, p · q), where p, q ∈ S1 and x ∈ X. Then X × S1 has S-ECIP.

B. Hyperspaces

For a topological spaec X, 2X denotes the collection of all nonempty compact
subsets of X. The set 2X equipped with some topology is called a hyperspace of X.
Among various topologies defined on 2X , the Vietoris topology also called the finite
topology or the exponential topology is one of the most well studied topologies on
2X .

The sets of the form

⟨U1, U2, . . . , Un⟩ = {K ∈ 2X : K ⊂ ∪n
i=1Ui and for all 1 ≤ i ≤ n, K ∩ Ui ̸= ϕ},

where {U1, U2, . . . , Un} is a finite collection of open sets of X, form a base for
the Vietoris topology on 2X . In case, X is a metric space, the hyperspaces 2X
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of nonempty compact subsets of X can be metrized by the Hausdorff metric dH ,
defined by

dH(A, B) = max{supa∈Ad(a, B), supb∈ Bd(b, A)}

and the Vietoris topology coincides with the one introduced by the Hausdorff metric.

Result 2.5. The hyperspace 2X is a compact metric space if and only if X is a
compact metric space.

3. S-ECIP on Metric Spaces

Result 2.3 gives the information about the CIPH over a metric space X. After
removing the condition (ii) from this result we get the following theorem.

Theorem 3.1. A metric space on which S1 acts freely has the CIP.

Proof. Let (X, d) be a metric space with d ≤ 2π and let the map · : X × S1 −→ X
be a free action.

For a nonempty closed subset A of X, define the map fA : X −→ X by

fA(x) = x · e i
2d(x, A).

Since the action ‘·’ is free and 0 < 1
2d(x, A) < 2π if x /∈ A, we get fixfA = A. 2

Theorem 3.2. Let X be a metric space on which S1 act freely such that the orbits
are equidistant to each other. Then X has S-ECIP.

Proof. Let (X, d) be a metric space with d ≤ 2π and let the map · : X × S1 −→ X
be a free action. By equidistant orbits to each other we mean, if O1 and O2 are two
orbits in X then d(x,O2) is fixed for all x ∈ O1 and equal to d(x,O1) for all x ∈ O2.
The set of stationary points of X is empty and orbits are homeomorphic to S1. If A
is nonempty invariant closed subset of X, then A is union of some orbits. Consider
the map fA : X −→ X as defined in the previous theorem. We have fixfA = A.

Now, to prove that fA is an equivariant map we show that

fA(x · p) = fA(x) · p, p ∈ S1

or, x · p · e i
2d(x·p, A) = x · e i

2d(x, A) · p
or, d(x · p, A) = d(x, A).

Since x · p and x are in the same orbit and the orbits are equidistant to each other
we get the result.

This proves that for any nonempty invariant closed subset A of X there exists
an equivariant selfmap fA on X whose fixed point set is A. 2

4. S-ECIP on Hyperspaces

Let G be a compact group, X a metrizable space and 2X is a hyperspace of all
nonempty compact subsets of X.
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If · : X × G −→ X is an action, then the map ∗ : 2X × G −→ 2X defined by
∗(A, g) = A ∗ g = {a · g : a ∈ A}, where g ∈ G, A ∈ 2X is a continuous action[1].
That is if X is G-space, then 2X is a G-space. This led to the following:

Theorem 4.1. Let X be a metric space and S1 act on X × S1 by the action
(x, p) · q = (x, p · q), where p, q ∈ S1 and x ∈ X. Then the hyperspace 2X×S1

of
all nonempty compact subsets of X × S1 has S-ECIP.

Proof. Consider an equivalent metric d1(≤ 1) on X and the arc length metric d2
on S1. Then X × S1 is a metric space with the metric d, defined by

d2((x, p), (y, q)) = d21(x, y) + d22(p, q),

where (x, p) and (y, q) are elements of X × S1.
Since S1 is a compact group acting on the metric space (X × S1, d), then the

map ∗ : 2X×S1 × S1 −→ 2X×S1

defined by ∗(A, q) = A ∗ q = {a · g : a ∈ A} is a
continuous action.

The hyperspace 2X×S1

is a metric space, with the Hausdorff metric dH . Metric
dH is bounded follows from below:

Since

d(a,B) = inf(b1,b2)∈B

√
d21(a1, b1) + d22(a2, b2) ≤

√
1 + (2π)2

where a = (a1, a2) ∈ X × S1, (b1, b2) ∈ B and B ∈ 2X×S1

. We have

dH(A, B) = max{supa∈Ad(a, B), supb∈ Bd(b, A)} ≤
√
1 + (2π)2.

The set of stationary points of the S1-space 2X×S1

is

S = {C × S1 : C is a compact set in X}.

Let K be an invariant closed subset of 2X×S1

containing S. Define a map

f : 2X×S1

−→ 2X×S1

by f(A) = A ∗ eia(A), where A ∈ 2X×S1

and a(A) = 1
2dH(A, K).

If A /∈ K, then A is not an stationary point and 0 < a(A) < 2π. Thus we get
that fixf = K.

Now we show that the map f is equivariant. If p ∈ S1, then

f(A) ∗ p = A ∗ eia(A) ∗ p,

and
f(A ∗ p) = A ∗ p ∗ eia(A∗p).

Since the invariant set K is a union of some orbits we have

dH(A, K) = infS1
B∈KdH(A, S1

B).
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By noting that

dH(A, S1
B) = infq∈S1dH(A, B ∗ q) = infq∈S1dH(A ∗ p, B ∗ q) = dH(A ∗ p, S1

B)

we have

dH(A, K) = infS1
B∈KdH(A, S1

B) = infS1
B∈KdH(A ∗ p, S1

B) = dH(A ∗ p, K),

where S1
B is an orbit of B in the space 2X×S1

.
Thus

a(A ∗ p) = 1

2
dH(A ∗ p, K) =

1

2
dH(A, K) = a(A)

shows that
f(A) ∗ p = f(A ∗ p), for all p ∈ S1.

This proves that for each nonempty invariant closed subset K in 2X×S1

containing
the set S of stationary points there exists an equivariant map f from 2X×S1

to
2X×S1

whose fixed point set is K. 2

Remark 4.2. We remark that in the above proof, X×S1 could be replaced by any
space Y on which S1 acts freely such that the orbits are equidistant to each other.
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