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Abstract. In this paper, we introduce the concept of generalized c-distance on a cone

metric space and prove some common fixed point and coincidence point results by using

this notion. Our results generalize and extend several well known comparable results in

the literature.

1. Introduction

In 2007, Huang and Zhang [8] had introduced the concept of cone metric spaces.
Then, based on the notion of cone metric spaces, a series of articles have been ded-
icated to the improvement of fixed point theory. In some works, the authors used
normal cones to extend some fixed point theorems. Very recently, Wang and Guo
[21] introduced the concept of c-distance on a cone metric space, which is a cone
version of the w-distance of Kada et.al.[11] and proved a common fixed point theo-
rem for a pair of self mappings in cone metric spaces. In this work, we introduce the
concept of generalized c-distance on a cone metric space and prove some common
fixed point theorems for a pair of weakly compatible mappings in cone metric spaces
by employing this new notion. It is worth mentioning that the cone under consid-
eration is non-normal. Finally, an example is provided to show that the generalized
c-distances form a bigger category than that of c-distances.

2. Preliminaries

Let E be a real Banach space and θ denote the zero element in E. A cone P is
a subset of E such that
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(i) P is closed nonempty and P̸= {θ}
(ii) a, b ∈ R, a, b ≥ 0, x, y ∈ P ⇒ ax+ by ∈ P

(iii) P ∩ (−P ) = {θ}.

For a given cone P ⊆ E, we can define a partial ordering ≼ on E with respect
to P by x ≼ y if and only if y−x ∈ P . We shall write x ≺ y (equivalently, y ≻ x) if
x ≼ y and x ̸= y, while x ≪ y will stand for y − x ∈ int(P ), where int(P ) denotes
the interior of P . The cone P is called normal if there is a number K > 0 such that
for all x, y ∈ E,

θ ≼ x ≼ y implies ∥x∥ ≤ K ∥y∥.
The least positive number satisfying the above inequality is called the normal

constant of P . Rezapour and Hamlbarani [18] proved that there are no normal
cones with normal constant K < 1 and for each k > 1 there are cones with normal
constant K > k.

Definition 2.1.([8]) LetX be a nonempty set. Suppose the mapping d : X×X → E
satisfies

(i) θ ≼ d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(x, y) ≼ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X, and (X, d) is called a cone metric space.

Definition 2.2.([8]) Let (X, d) be a cone metric space. Let (xn) be a sequence in
X and x ∈ X. If for every c ∈ E with θ ≪ c there is a natural number n0 such that
for all n > n0, d(xn, x) ≪ c, then (xn) is said to be convergent and (xn) converges
to x, and x is the limit of (xn). We denote this by lim

n→∞
xn = x or xn → x (n → ∞).

Definition 2.3.([8]) Let (X, d) be a cone metric space, (xn) be a sequence in X. If
for any c ∈ E with θ ≪ c, there is a natural number n0 such that for all n,m > n0,
d(xn, xm) ≪ c, then (xn) is called a Cauchy sequence in X.

Definition 2.4.([8]) Let (X, d) be a cone metric space, if every Cauchy sequence is
convergent in X, then X is called a complete cone metric space.

Lemma 2.5.([19]) Let E be a real Banach space with a cone P . Then

(i) If a ≪ b and b ≪ c, then a ≪ c.

(ii) If a ≼ b and b ≪ c, then a ≪ c.

Lemma 2.6.([8]) Let E be a real Banach space with cone P . Then one has the
following.

(i) If θ ≪ c, then there exists δ > 0 such that ∥b∥ < δ implies b ≪ c.

(ii) If an, bn are sequences in E such that an → a, bn → b and an ≼ bn for all

n ≥ 1, then a ≼ b.
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Proposition 2.7.([9]) If E is a real Banach space with cone P and if a ≼ λa where
a ∈ P and 0 ≤ λ < 1 then a = θ.

Definition 2.8.([2]) Let T and S be self mappings of a set X. If y = Tx = Sx for
some x in X, then x is called a coincidence point of T and S and y is called a point
of coincidence of T and S.

Definition 2.9.([10]) The mappings T, S : X → X are weakly compatible, if for
every x ∈ X, the following holds:

T (Sx) = S(Tx) whenever Sx = Tx.

Proposition 2.10.([2]) Let S and T be weakly compatible selfmaps of a nonempty
set X. If S and T have a unique point of coincidence y = Sx = Tx, then y is the
unique common fixed point of S and T .

Definition 2.11.([21]) Let (X, d) be a cone metric space. Then a mapping q :
X ×X → E is called a c-distance on X if the following are satisfied :

(i) θ ≼ q(x, y) for all x, y ∈ X;

(ii) q(x, z) ≼ q(x, y) + q(y, z) for all x, y, z ∈ X;

(iii) for all x ∈ X, if q(x, yn) ≼ u for some u = ux ∈ P and all n ≥ 1, then
q(x, y) ≼ u whenever (yn) is a sequence in X converging to a point y ∈ X;

(iv) for all c ∈ E with θ ≪ c, there exists e ∈ E with θ ≪ e such that q(z, x) ≪ e
and q(z, y) ≪ e imply d(x, y) ≪ c.

Example 2.12.([21]) Let (X, d) be a cone metric space and P be a normal cone.
Put q(x, y) = d(x, y) for all x, y ∈ X. Then q is a c-distance.

Definition 2.13. Let (X, d) be a cone metric space and j ∈ N. A function
q : X × X → E is called a generalized c-distance of order j on X if the following
conditions are satisfied:

(q1) θ ≼ q(x, y), for all x, y ∈ X;

(q2) q(x, z) ≼
j∑

i=0

q(xi, xi+1), for all x, z ∈ X and for all distinct points xi ∈

X, i ∈ {1, 2, 3, · · ·, j} each of them different from x(= x0) and z(= xj+1);

(q3) for all x ∈ X, if q(x, yn) ≼ u for some u = ux ∈ P and all n ≥ 1, then
q(x, y) ≼ u whenever (yn) is a sequence in X converging to a point y ∈ X;

(q4) for all c ∈ E with θ ≪ c, there exists e ∈ E with θ ≪ e such that q(z, x) ≪ e
and q(z, y) ≪ e imply d(x, y) ≪ c.
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It follows from above definition that every c-distance is a generalized c-distance
of order 1. In fact, every c-distance may also be considered as a generalized c-
distance of any order j ∈ N. But the converse does not hold (see Example 3.11).

3. Main Results

In this section we always suppose that E is a real Banach space, P is a cone in
E with int(P ) ̸= ∅ and ≼ is the partial ordering with respect to P . We begin with
the following Lemma which is crucial in the proofs of the main theorems.

Lemma 3.1. Let (X, d) be a cone metric space and q be a generalized c-distance of
order j on X. Let (xn) and (yn) be sequences in X. Suppose that (αn) and (βn)
are sequences in P converging to θ, and let x, y, z ∈ X. Then the following hold :

(i) If q(xn, yn) ≼ αn and q(xn, z) ≼ βn for any n ∈ N, then (yn) converges to z;

(ii) If q(xn, y) ≼ αn and q(xn, z) ≼ βn for any n ∈ N, then y = z. In particular, if
q(x, y) = θ and q(x, z) = θ, then y = z;
(iii) If q(xn, xm) ≼ αn for any n,m ∈ N with m > n, then (xn) is a Cauchy

sequence.

Proof. (i) Let c ∈ E with θ ≪ c. Then there exists δ > 0 such that ∥ x ∥< δ
implies c−x ∈ int (P ). Since (αn) and (βn) are converging to θ, there exists n0 ∈ N
such that ∥ αn ∥< δ and ∥ βn ∥< δ for all n > n0. Thus c − αn ∈ int (P ) and
c − βn ∈ int (P ) for all n > n0 and so αn ≪ c and βn ≪ c for all n > n0. By
hypothesis, q(xn, yn) ≼ αn ≪ c and q(xn, z) ≼ βn ≪ c for all n > n0. Now from
(q4) with e = c it follows that d(yn, z) ≪ c for all n > n0. Therefore (yn) converges
to z.
Clearly, (ii) is immediate from (i).
(iii) Let c ∈ E with θ ≪ c. Then by the arguments similar to that used above,
there exists a positive integer n0 such that q(xn, xm) ≼ αn ≪ c for all m > n with
n > n0. This implies that q(xn, xn+1) ≼ αn ≪ c and q(xn, xm+1) ≼ αn ≪ c for all
m > n with n > n0. From (q4) with e = c it follows that d(xn+1, xm+1) ≪ c for all
m > n with n > n0. This shows that (xn) is a Cauchy sequence in X. 2

Theorem 3.2. Let (X, d) be a cone metric space and q be a generalized c-distance
of order j on X. Suppose the mappings f, g : X → X satisfy

(3.1) q(fx, fy) ≼ r q(gx, gy)

for all x, y ∈ X and 0 ≤ r < 1. If f(X) ⊆ g(X) and g(X) is a complete subspace
of X, then f and g have a unique point of coincidence in X. Moreover, if f and g
are weakly compatible, then f and g have a unique common fixed point in X.

Proof. Let x0 be an arbitrary element of X. Since f(X) ⊆ g(X), there exists an
element x1 ∈ X such that fx0 = gx1. Proceeding in this way, a sequence (xn) can
be chosen such that gxn = fxn−1, n = 1, 2, 3, · · ·.

We can suppose that gxn ̸= gxm for all distinct n,m ∈ {0, 1, 2, · · ·}. In fact,
if gxn = gxm for some n,m ∈ {0, 1, 2, · · ·}, m ̸= n then assuming m > n, we may
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write
gxn = gxn+k, where k = m− n ≥ 1.

Put y = gxn. Then

q(y, gxn+1) = q(gxn, gxn+1)

= q(gxn+k, gxn+1)

= q(fxn+k−1, fxn)

≼ r q(gxn+k−1, gxn)

= r q(gxn+k−1, gxn+k)

≼ r2 q(gxn+k−2, gxn+k−1)

·
·
·
≼ rk q(gxn, gxn+1)

= rk q(y, gxn+1).

Since 0 ≤ r < 1, by using Proposition 2.7 it follows that q(y, gxn+1) = θ.
Now,

q(y, y) = q(gxn, gxn)

= q(gxn+k, gxn+k)

≼ rk q(gxn, gxn)

= rk q(y, y).

Again by using Proposition 2.7, q(y, y) = θ. Since q(y, gxn+1) = θ and q(y, y) = θ,
by using Lemma 3.1(ii), we have gxn+1 = y. Therefore, fxn = y = gxn i.e., y is a
point of coincidence of f and g.
Thus in the sequel of the proof we can suppose that gxn ̸= gxm for all distinct
n,m ∈ {0, 1, 2, · · ·}.

For any natural number n, we have by using condition (3.1) that

(3.2) q(gxn, gxn+1) = q(fxn−1, fxn) ≼ r q(gxn−1, gxn) ≼ · · · ≼ rn q(gx0, gx1).

Let us now prove that for all m,n ∈ N with m > n, one has

(3.3) q(gxn, gxm) ≼ rn

1− r
M,

where M = q(gx0, gx1) + q(gx0, gx2) + · · ·+ q(gx0, gxj) ∈ P .
Taking m = n+ p where p = 1, 2, 3, · · · and using (3.1), we have

(3.4) q(gxn, gxm) ≼ rn q(gx0, gxm−n) = rn q(gx0, gxp).
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If p ≤ j, then

q(gx0, gxp) ≼ (1 + r + r2 + · · ·) q(gx0, gxp)

≼ 1

1− r
M.

If p > j, then there exists s ∈ N such that p = sj + t, where 0 ≤ t < j.
If t = 0, then by using conditions (3.2) and (3.4)

q(gx0, gxp) ≼ q(gx0, gx1) + q(gx1, gx2) + · · ·+ q(gxj−1, gxj) + q(gxj , gxp)

≼ q(gx0, gx1) + rq(gx0, gx1) + · · ·+ rj−1q(gx0, gx1) + rjq(gx0, gxp−j)

=

j−1∑
ν=0

rνq(gx0, gx1) + rjq(gx0, gxp−j).(3.5)

By repeated application of (3.5), we obtain at (s− 1)-th step that

q(gx0, gxp) ≼
(s−1)j−1∑

ν=0

rνq(gx0, gx1) + r(s−1)jq(gx0, gxj)

≼ (1 + r + r2 + · · ·+ r(s−1)j)M

≼ 1

1− r
M.

If t ̸= 0, then

q(gx0, gxp) ≼ q(gx0, gx1) + q(gx1, gx2) + · · ·+ q(gxj−1, gxj) + q(gxj , gxp)

≼
j−1∑
ν=0

rνq(gx0, gx1) + rjq(gx0, gxp−j).(3.6)

By repeated application of (3.6), we obtain at s-th step that

q(gx0, gxp) ≼
sj−1∑
ν=0

rνq(gx0, gx1) + rsjq(gx0, gxt)

≼ (1 + r + r2 + · · ·+ rsj)M

≼ 1

1− r
M.

Thus, for the case p > j, we have

q(gx0, gxp) ≼
1

1− r
M.

It now follows from (3.4) that for all m,n ∈ N with m > n,

(3.7) q(gxn, gxm) ≼ rn

1− r
M.
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By using Lemma 3.1(iii), we conclude that (gxn) is a Cauchy sequence in g(X).
Since g(X) is complete, there exists an element u ∈ g(X) such that gxn → u as
n → ∞.
By (3.7) and (q3), we have

q(gxn, u) ≼
rn

1− r
M,

which implies that, q(gxn, u) → θ as n → ∞.
Since u ∈ g(X), there exists z ∈ X such that u = gz.
Again, from (3.1)

q(gxn, fz) = q(fxn−1, fz) ≼ r q(gxn−1, gz) = r q(gxn−1, u) → θ as n → ∞.

By Lemma 3.1(ii), q(gxn, u) → θ and q(gxn, fz) → θ imply that fz = u = gz.
Therefore, u becomes a point of coincidence of f and g.
For uniqueness, let there exists w( ̸= u) ∈ X such that fx = gx = w for some x ∈ X.
Then

q(u,w) = q(fz, fx) ≼ r q(gz, gx) = r q(u,w).

By applying Proposition 2.7, it follows that q(u,w) = θ.
Now,

q(u, u) = q(fz, fz) ≼ r q(gz, gz) = r q(u, u),

which implies that, q(u, u) = θ.
Thus, q(u,w) = θ and q(u, u) = θ imply that u = w. Therefore, f and g have a
unique point of coincidence in X.
If f and g are weakly compatible, then by Proposition 2.10 , f and g have a unique
common fixed point in X. 2

Remark 3.3. We see that if u is a point of coincidence of f and g, then q(u, u) = θ.

The following Corollary is an extension of Theorem 3.1[7].

Corollary 3.4. Let (X, d) be a complete cone metric space and q be a generalized
c-distance of order j on X. Suppose the mapping f : X → X satisfies

q(fx, fy) ≼ r q(x, y)

for all x, y ∈ X and 0 ≤ r < 1. Then f has a unique fixed point in X.

Proof. The proof can be obtained from Theorem 3.2 by considering g = I, the
identity mapping. 2

Corollary 3.5. Let (X, d) be a complete cone metric space and q be a generalized
c-distance of order j on X. Suppose g : X → X is an onto mapping satisfying

k q(x, y) ≼ q(gx, gy)

for all x, y ∈ X, where k > 1 is a constant. Then g has a unique fixed point in X.
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Proof. The conclusion of theCorollary follows fromTheorem3.2 by taking f = I. 2

The following Corollary is Theorem 1[8].

Corollary 3.6. Let (X, d) be a complete cone metric space, P a normal cone.
Suppose the mapping f : X → X satisfies the contractive condition

d(fx, fy) ≼ k d(x, y)

for all x, y ∈ X, where k ∈ [0, 1) is a constant. Then f has a unique fixed point in
X.

Proof. Since P is normal, it follows that d is a c-distance on X. So, we may consider
d as a generalized c-distance of any order j. The desired result can be obtained from
Theorem 3.2 by putting q = d, g = I. 2

Theorem 3.7. Let (X, d) be a cone metric space and q be a generalized c-distance
of order j on X. Suppose the mappings f, g : X → X satisfy

(3.8) q(fx, fy) ≼ a1 q(gx, fx) + a2 q(gy, fy)

for all x, y ∈ X, and a1, a2 ∈ [0, 1) with a1 + a2 < 1 and that

(3.9) inf {q(gx, y) + q(fx, y) + q(gx, fx) : x ∈ X} ≻ θ

for all y ∈ X with y is not a point of coincidence of f and g. If f(X) ⊆ g(X) and
g(X) is a complete subspace of X, then f and g have a unique point of coincidence
in X. Moreover, if f and g are weakly compatible, then f and g have a unique
common fixed point in X.

Proof. Let x0 be an arbitrary point in X. As in Theorem 3.2, we can construct a
sequence (xn) such that gxn = fxn−1 for all n ≥ 1.

For any natural number n, we have by using condition (3.8) that

q(gxn, gxn+1) = q(fxn−1, fxn)

≼ a1 q(gxn−1, fxn−1) + a2 q(gxn, fxn)

= a1 q(gxn−1, gxn) + a2 q(gxn, gxn+1)

which implies that

(3.10) q(gxn, gxn+1) ≼ r q(gxn−1, gxn)

where r = a1

1−a2
∈ [0, 1).

By repeated application of (3.10), we obtain

(3.11) q(gxn, gxn+1) ≼ rn q(gx0, gx1).
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Let m,n ∈ N with m > n. Then using (3.8), we have

q(gxn, gxm) = q(fxn−1, fxm−1)

≼ a1q(gxn−1, fxn−1) + a2q(gxm−1, fxm−1)

= a1q(gxn−1, gxn) + a2q(gxm−1, gxm)

≼ a1r
n−1q(gx0, gx1) + a2r

m−1q(gx0, gx1)

≼ (a1 + a2)r
n−1q(gx0, gx1),(3.12)

since rm−1 ≤ rn−1.

By using Lemma 3.1(iii), we conclude that (gxn) is a Cauchy sequence in g(X).
Since g(X) is complete, there exists an element u ∈ g(X) such that gxn → u as
n → ∞.
By (3.12) and (q3), we have

(3.13) q(gxn, u) ≼ (a1 + a2)r
n−1q(gx0, gx1).

Suppose that u is not a point of coincidence of f and g. Then by hypothesis,
(3.11) and (3.13), we have

θ ≺ inf{q(gx, u) + q(fx, u) + q(gx, fx) : x ∈ X}
≼ inf{q(gxn, u) + q(fxn, u) + q(gxn, fxn) : n ∈ N}
= inf{q(gxn, u) + q(gxn+1, u) + q(gxn, gxn+1) : n ∈ N}
≼ inf{(a1 + a2)r

n−1q(gx0, gx1) + (a1 + a2)r
nq(gx0, gx1)

+rn q(gx0, gx1) : n ∈ N}
= θ,

which is a contradiction. Therefore, u is a point of coincidence of f and g. So there
exists z ∈ X such that fz = gz = u.
For uniqueness, let there exists w( ̸= u) ∈ X such that fx = gx = w for some x ∈ X.
Then

q(u, u) = q(fz, fz) ≼ a1 q(gz, fz) + a2 q(gz, fz)

= (a1 + a2) q(u, u).

Hence by Proposition 2.7, it follows that q(u, u) = θ.
By the arguments similar to that used above, we have q(w,w) = θ.
Now,

q(u,w) = q(fz, fx) ≼ a1 q(gz, fz) + a2 q(gx, fx)

= a1 q(u, u) + a2 q(w,w)

= θ,

which gives that, q(u,w) = θ.
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But, q(u,w) = θ and q(u, u) = θ imply that u = w. Therefore, f and g have a
unique point of coincidence in X.
If f and g are weakly compatible, then by Proposition 2.10 , f and g have a unique
common fixed point in X. 2

Corollary 3.8. Let (X, d) be a complete cone metric space and q be a generalized
c-distance of order j on X. Suppose the mapping f : X → X satisfies

(3.14) q(fx, fy) ≼ a1 q(x, fx) + a2 q(y, fy)

for all x, y ∈ X, and a1, a2 ∈ [0, 1) with a1 + a2 < 1 and that

inf {q(x, y) + q(fx, y) + q(x, fx) : x ∈ X} ≻ θ

for all y ∈ X with y ̸= fy. Then f has a unique fixed point in X.

Proof. The proof follows from Theorem 3.7 by taking g = I. 2

As an application of Corollary 3.8, we have the following results.

Theorem 3.9.([8]) Let (X, d) be a complete cone metric space, P a normal cone.
Suppose the mapping T : X → X satisfies the contractive condition

(3.15) d(Tx, Ty) ≼ α [d(x, Tx) + d(y, Ty)]

for all x, y ∈ X, where α ∈ [0, 1
2 ) is a constant. Then T has a unique fixed point in

X.

Proof. Since P is normal, it follows that d is a c-distance on X. So, we may consider
d as a generalized c-distance of any order j. The condition (3.15) can be restated
as

d(Tx, Ty) ≼ αd(x, Tx) + αd(y, Ty)

for every x, y ∈ X, where 2α ∈ [0, 1) is a constant. Thus, condition (3.14) of
Corollary 3.8 is satisfied.
Assume that there exists y ∈ X with y ̸= Ty and

inf {d(x, y) + d(Tx, y) + d(x, Tx) : x ∈ X} = θ.

Then, there exists a sequence (xn) in X such that

lim
n→∞

{d(xn, y) + d(Txn, y) + d(xn, Txn)} = θ,

which implies that d(xn, y) → θ, d(Txn, y) → θ, d(xn, Txn) → θ.
From condition (3.15), we have

d(Txn, T y) ≼ α [d(xn, Txn) + d(y, Ty)]

for any n ∈ N. Since P is normal, it follows that

d(y, Ty) ≼ αd(y, Ty),



Some Common Fixed Point Theorems via Generalized c-Distance 215

which gives that d(y, Ty) = θ i.e., y = Ty, a contradiction.
Hence, if y ̸= Ty, then

inf {d(x, y) + d(Tx, y) + d(x, Tx) : x ∈ X} ≻ θ.

So, using Corollary 3.8, we have the desired result. 2

Theorem 3.10. Let (X, d) be a complete cone metric space and q be a c-distance on
X. Suppose that the mapping f : X → X is continuous and satisfies the contractive
condition:

(3.16) q(fx, fy) ≼ a1 q(x, fx) + a2 q(y, fy)

for all x, y ∈ X, where a1, a2 ∈ [0, 1) with a1 + a2 < 1. Then f has a unique fixed
point in X.

Proof. We treat q as a generalized c-distance of order 1. Assume that there exists
y ∈ X with y ̸= fy and

inf {q(x, y) + q(fx, y) + q(x, fx) : x ∈ X} = θ.

Then, there exists a sequence (xn) in X such that

lim
n→∞

{q(xn, y) + q(fxn, y) + q(xn, fxn)} = θ,

which implies that q(xn, y) → θ, q(fxn, y) → θ, q(xn, fxn) → θ.
Since q(xn, y) → θ and q(xn, fxn) → θ, by Lemma 3.1, we have (fxn) converges to
y.
We obtain from condition (3.16) that

q(fxn, f
2xn) ≼ a1 q(xn, fxn) + a2 q(fxn, f

2xn).

So, it must be the case that

(3.17) q(fxn, f
2xn) ≼

a1
1− a2

q(xn, fxn).

From (q2) and (3.17), we have

q(xn, f
2xn) ≼ q(xn, fxn) + q(fxn, f

2xn)

≼ q(xn, fxn) +
a1

1− a2
q(xn, fxn)

−→ θ.

Again, by Lemma 3.1, (f2xn) converges to y.
Since f is continuous, we have

fy = f( lim
n→∞

fxn) = lim
n→∞

f2xn = y,
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which is a contradiction.
Hence, if y ̸= fy, then

inf {q(x, y) + q(fx, y) + q(x, fx) : x ∈ X} ≻ θ.

So, by Corollary 3.8, f has a unique fixed point in X. 2

We conclude with an example in favour of Theorem 3.2.

Example 3.11. Let E = R2, the Euclidean plane and P = {(x, y) ∈ R2 : x, y ≥ 0}
a cone in E. Let X = {1, 3, 5, 7} and define d : X ×X → E by

d(x, y) = (α | x− y |, β | x− y |)

for all x, y ∈ X, where α, β are positive constants. Then (X, d) is a cone metric
space. Let q : X ×X → E be defined by

q(1, 3) = q(3, 1) = (8, 8), q(1, 5) = q(5, 1) = q(3, 5) = q(5, 3) = (2, 2),

q(1, 7) = q(7, 1) = q(3, 7) = q(7, 3) = q(5, 7) = q(7, 5) = (4, 4)

and q(x, x) = (0, 0) for every x ∈ X.

Then q satisfies condition (q2) for j = 2. Also, conditions (q1) and (q3) are imme-
diate. To show (q4), for any c ∈ E with θ ≪ c, put e = ( 12 ,

1
2 ). Then

q(z, x) ≪ e and q(z, y) ≪ e imply d(x, y) ≪ c.

Thus q is a generalized c-distance of order 2 on X but it is not a c-distance on X
since it lacks the triangular property:

q(1, 3) = (8, 8) ̸≼ q(1, 5) + q(5, 3) = (2, 2) + (2, 2).

We define f, g : X → X by

fx = 5, for all x ∈ X

and

gx = 5, for x ∈ {1, 5, 7}
= 7, for x = 3.

Then, for every x, y ∈ X one has

q(fx, fy) ≼ r q(gx, gy).

where r ∈ [0, 1) is a constant. Thus, we have all the conditions of Theorem 3.2 and
5 is the unique common fixed point of f and g in X. 2
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