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Abstract. We study the braid indices of the Kanenobu knots. It is known that the Ka-

nenobu knots have the same HOMFLYPT polynomial and the same Khovanov-Rozansky

homology. The MFW inequality is known for giving a lower bound of the braid index of a

link by applying the HOMFLYPT polynomial. Therefore, it is not easy to determine the

braid indices of the Kanenobu knots. In our previous paper, we gave upper bounds and

sharper lower bounds of the braid indices of the Kanenobu knots by applying the 2-cable

version of the zeroth coefficient HOMFLYPT polynomial. In this paper, we give sharper

upper bounds of the braid indices of the Kanenobu knots.

1. Introduction

Every oriented link in the 3-sphere is presented as a closed braid [1]. The braid
index, denoted by braid(L), of an oriented link L is the minimum number of strings
needed for L to be presented as a closed braid, which is an invariant of the isotopy
type of L. The MFW inequality is known for giving a lower bound of braid(L) by
applying the HOMFLYPT polynomial P (L) = P (L; v, z) in Z[v±1, z±1] ([2], [9]):

1

2
v-spanP (L) + 1 ≤ braid(L),(1.1)

where v-spanP (L) is the difference between the maximum and minimum degrees of
P (L) on the variable v, denoted by v-maxdegP (L) and v-mindegP (L), respectively.
The HOMFLYPT polynomial P (L) is an invariant of the isotopy type of L, which
is computed by the following recursive formula ([3], [7], [10]):

P (U) = 1 for the unknot U ;
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v−1P (L+)− vP (L−) = zP (L0),(1.2)

where L+, L−, and L0 are three oriented links which are identical except near one
point as shown in Fig. 1. In this paper, we study the braid index of the Kanenobu

-

Figure 1: Skein triple.

knot k(n) for n ≥ 0 as shown in Fig. 2. It is known that the Kanenobu knots have
the same HOMFLYPT polynomial and the same Khovanov-Rozansky homology
([4],[8]):

P (k(n)) = (v−2 − 1 + v2 − z2)2 for any n.

By (1.1), we have
braid(k(n)) ≥ 5 for any n.

Therefore, it is not easy to determine braid(k(n)). In the previous paper [11],
we gave an upper bound and a sharper lower bound of braid(k(n)) by applying the
2-cable version of the zeroth coefficient HOMFLYPT polynomial as follows:braid(k(n)) = 5 if n = 0, 1,

n+ 3 ≤ braid(k(n)) ≤ 2n+ 3 if n ≥ 2.

In this paper, we give a sharper upper bound of braid(k(n)) for n ≥ 2 and
determine braid(k(2)) as follows:

Theorem 1.1. Let k(n) be the Kanenobu knot for n ≥ 0. Then we havebraid(k(n)) = 5 if n = 0, 1, 2,

n+ 3 ≤ braid(k(n)) ≤ 2n+ 1 if n ≥ 3.

2. Proof of Theorem 1.1

In this section, we give an upper bound of braid(k(n)) for n ≥ 2.

Proof of Theorem 1.1.

First, we transform the Kanenobu knot k(n) as shown in Fig. 3 I–VII and set the
axis perpendicular to this paper through the point x as shown in Fig. 3 VII. Next,
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-

... ...

Figure 2: Kanenobu knot k(n).

we turn over strands with counterclockwise orientation with the axis as shown in
Fig. 4 VIII and transform k(n) as shown in Fig. 4 VIII–XIII. Finally, we see that
an upper bound of braid(k(n)) is 2n+ 1. 2

Remark 2.1. In Theorem 1.1, we give a lower bound of braid(k(3)) by applying
the 2-cable version of the zeroth coefficient HOMFLYPT polynomial. However,
we cannot give a sharper lower bound of braid(k(3)) from the entire HOMFLYPT
polynomial of the (2, q)-cable link, denoted by k(3)(2,q), of k(3) for any q ∈ Z. In
fact, we have P (k(3)(2,0)) and P (k(3)(2,1)) as shown in Tables 1 and 2. Here the
HOMFLYPT polynomial P (L; v, z) is given as a matrix of coefficients (pij), where

P (L; v, z) =
∑

pijv
izj , with the range of i and j indicated at the side.

−1 1 3 5 7 9 11 13 15 17 19 21
0 −17 −236 −1058 −2214 −2507 −1652 −651 −151 −19 −1 0 −11
1 59 700 3251 7434 9534 7387 3591 1103 208 22 1 −9

−5 −84 −668 −2874 −6674 −8823 −7023 −3486 −1087 −207 −22 −1 −7
14 95 245 500 1031 1442 1147 519 133 18 1 0 −5

−26 −126 −168 102 426 378 150 28 2 0 0 0 −3
35 143 237 171 30 −20 −9 −1 0 0 0 0 −1

−35 −143 −237 −171 −30 20 9 1 0 0 0 0 1
26 126 168 −102 −426 −378 −150 −28 −2 0 0 0 3

−14 −95 −245 −500 −1031 −1442 −1147 −519 −133 −18 −1 0 5
5 84 668 2874 6674 8823 7023 3486 1087 207 22 1 7

−1 −59 −700 −3251 −7434 −9534 −7387 −3591 −1103 −208 −22 −1 9
0 17 236 1058 2214 2507 1652 651 151 19 1 0 11

Table 1: P (k(3)(2,0)).
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0 2 4 6 8 10 12 14 16 18 20 22
−2 −85 −685 −2262 −3840 −3729 −2185 −785 −169 −20 −1 0 −10
11 264 2046 7151 13368 14762 10195 4525 1291 229 23 1 −8

−26 −300 −1865 −6340 −12117 −13765 −9740 −4405 −1274 −228 −23 −1 −6
48 216 490 1026 1909 2260 1564 636 150 19 1 0 −4

−66 −236 −172 339 700 504 176 30 2 0 0 0 −2
45 172 248 136 −3 −30 −10 −1 0 0 0 0 0
10 29 11 −35 −33 −10 −1 0 0 0 0 0 2

−40 −110 −4 237 274 126 26 2 0 0 0 0 4
34 121 245 526 878 818 417 117 17 1 0 0 6

−21 −216 −1197 −3466 −5443 −4942 −2717 −919 −187 −21 −1 0 8
10 205 1346 3900 5934 5228 2808 934 188 21 1 0 10
−2 −68 −449 −1204 −1626 −1222 −533 −134 −18 −1 0 0 12

Table 2: P (k(3)(2,1)).

We see that

v-maxdegP (k(3)(2,0)) = 11, v-mindegP (k(3)(2,0)) = −11,

v-maxdegP (k(3)(2,1)) = 12, v-mindegP (k(3)(2,1)) = −10.

By (1.2), we have

P (k(3)(2,q)) =

{
v2P (k(3)(2,q−2)) + vzP (k(3)(2,q−1)) if q ≥ 2,

v−2P (k(3)(2,q+2))− v−1zP (k(3)(2,q+1)) if q ≤ −1.

We see inductively that

v-spanP (k(3)(2,q)) ≤ 22 for any q ∈ Z.

By (1.1), we have

1

2
v-spanP (k(3)(2,q)) + 1 ≤ braid(k(3)(2,q)).

By Theorem 1 in [12], we have

braid(k(3)(2,q)) = 2 braid(k(3)).

Therefore, we have
6 ≤ braid(k(3)).

Here we discuss how to compute P (k(3)(2,0)) and P (k(3)(2,1)) by Kodama’s KNOT
program [6]. Since k(3)(2,0) and k(3)(2,1) have large crossing numbers, we cannot
apply Kodama’s KNOT program to these links directly. We use a skein relation for
the HOMFLYPT polynomial of 2-cable links given in [5]. Let L(t+), L(t−), L(e+),
L(e−), L(f+), L(f0), and L(f−) be oriented links identical outside a ball and inside
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are 8-end tangles t+, t−, e+, e−, f+, f0, and f− as shown in Fig. 5, respectively.
We call the ordered set of links

(
L(t+), L(t−), L(e+), L(e−), L(f+), L(f0), L(f−)

)
a

double skein 7-tuple. We denote the HOMFLYPT polynomial of the link L(s) by
P (s), where s is one of these tangles. Then we have

v−5P (t+) + v5P (t−)

= v−3P (e+) + v3P (e−) +
(
v−3P (f+) + (v−1 + v)P (f0) + v3P (f−)

)
z2.(2.1)

Let k(a,−b; c) and T (d) be two oriented links as shown in Fig. 6, where 8-end
tangles labelled a and −b are a double full twists and −b double full twists for a, b ≥
0, respectively and 4-end tangles labelled c and d are c half twists and d half twists
for c, d ∈ Z, respectively. Since we can compute P (k(3)(2,1)) in the same way as
P (k(3)(2,0)), we only compute P (k(3)(2,0)). We apply (2.1) to k(3)(2,0) = k(3,−3; 0)
as shown in Figs. 7 and 8. Then we obtain the following double skein 7-tuple:(

k(3,−1;−4), k(3,−3; 0), k(3,−2; 0), k(3,−2;−4), T (5) ⊔ T (−1),

T (4) ⊔ T (−2), T (3) ⊔ T (−3)
)
.

We can compute P (T (5)⊔T (−1)), P (T (4)⊔T (−2)), and P (T (3)⊔T (−3)) by Ko-
dama’s KNOT program. However, since k(3,−1;−4), k(3,−2; 0), and k(3,−2;−4)
have still large crossing numbers, we cannot apply Kodama’s KNOT program to
these links directly. In the case of k(a,−b; c), we obtain the following double skein
7-tuples: (

k(a,−b; c), k(a− 2,−b; c+ 4), k(a− 1,−b; c+ 4), k(a− 1,−b; c),

T (x+ 1) ⊔ T (y + 1), T (x) ⊔ T (y), T (x− 1) ⊔ T (y − 1)
)
,(2.2)

where a, b, c, x, and y are integers satisfying a ≥ 2, b ≥ 0, and x+y = 4a−4b+c−2,(
k(a,−b+ 2; c− 4), k(a,−b; c), k(a,−b+ 1; c), k(a,−b+ 1; c− 4),

T (x+ 1) ⊔ T (y + 1), T (x) ⊔ T (y), T (x− 1) ⊔ T (y − 1)
)
,(2.3)

where a, b, c, x, and y are integers satisfying a ≥ 0, b ≥ 2, and x+y = 4a−4b+c+2.
In order to compute P (k(3,−1;−4)), we apply (2.2) as follows:(

k(3,−1;−4), k(1,−1; 0), k(2,−1; 0), k(2,−1;−4), T (3) ⊔ T (1),

T (2) ⊔ T (0), T (1) ⊔ T (−1)
)
.

We can compute P (k(1,−1; 0)), P (T (3)⊔T (1)), P (T (2)⊔T (0)), and P (T (1)⊔
T (−1)) by Kodama’s KNOT program. Since k(2,−1; 0) and k(2,−1;−4) have still
large crossing numbers, we apply (2.2) as follows:(

k(2,−1; 0), k(0,−1; 4), k(1,−1; 4), k(1,−1; 0), T (3) ⊔ T (1),
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T (2) ⊔ T (0), T (1) ⊔ T (−1)
)
;(

k(2,−1;−4), k(0,−1; 0), k(1,−1; 0), k(1,−1;−4), T (−1) ⊔ T (1),

T (−2) ⊔ T (0), T (−3) ⊔ T (−1)
)
.

Since we can compute P (k(1,−1; 0)) and P (k(1,−1; 1)) by Kodama’s KNOT pro-
gram, we obtain P (k(1,−1; q)) by applying (1.2) inductively as follows:

P (k(1,−1; q)) =

{
v2P (k(1,−1; q − 2)) + vzP (k(1,−1; q − 1)) if q ≥ 2,

v−2P (k(1,−1; q + 2))− v−1zP (k(1,−1; q + 1)) if q ≤ −1.

We can compute the HOMFLYPT polynomials of the remaining links with
small crossing numbers by Kodama’s KNOT program. Thus, we can compute
P (k(3,−1;−4)). Since we can compute P (k(3,−2; 0)) and P (k(3,−2;−4)) in the
same way as P (k(3,−1;−4)), we can finally compute P (k(3)(2,0)).

Question 2.2. braid(k(3)) = 6, 7?
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Figure 3: Transformations I–VII.
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Figure 4: Transformations VIII–XIII.
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Figure 5: 8-end tangles t+, t−, e+, e−, f+, f0, and f−.

Figure 6: k(a,−b; c) and T (d).
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Figure 7: L(t+), L(t−), L(e+), and L(e−).
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Figure 8: L(f+), L(f0), and L(f−).


