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Abstract. Let f be a transcendental meromorphic function of finite order in the plane

such that f (m) has finitely many zeros for some positive integer m ≥ 2. Suppose that f (k)

and f share a CM, where k ≥ 1 is a positive integer, a ̸= 0 is a finite complex value. Then

f is an entire function such that f (k) − a = c(f − a), where c ̸= 0 is a nonzero constant.

The results in this paper are concerning a conjecture of Brück [5]. An example is provided

to show that the results in this paper, in a sense, are the best possible.

1. Introduction and Main Results

In this paper, by meromorphic functions we will always mean meromorphic
functions in the complex plane. We adopt the standard notations in Nevanlinna
theory of meromorphic functions as explained in [12, 16, 33, 34]. It will be con-
venient to let E denote any set of positive real numbers of finite linear measure,
not necessarily the same at each occurrence. For a nonconstant meromorphic func-
tion h, we denote by T (r, h) the Nevanlinna characteristic of h and by S(r, h) any
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quantity satisfying S(r, h) = o{T (r, h)}, as r → ∞ and r ̸∈ E.
Let f and g be two nonconstant meromorphic functions, and let a be a finite

value. We say that f and g share the value a CM, provided that f−a and g−a have
the same zeros and each common zero of f − a and g− a has the same multiplicity
related to f and g. Similarly, we say that f and g share a IM, provided that f − a
and g− a have the same zeros, and each common zero of f − a and g− a is counted
only once. In this paper, we also need the following definition:

Definition 1.1.([16],[34]) For a nonconstant entire function f, the order ρ(f) and
the hyper-order ρ2(f) are defined as

ρ(f) = lim sup
r→∞

logT (r, f)

logr
= lim sup

r→∞

loglogM(r, f)

logr

and

ρ2(f) = lim sup
r→∞

loglogT (r, f)

logr
= lim sup

r→∞

log log logM(r, f)

logr

respectively, where and in what follows, M(r, f) = max
|z|=r

|f(z)|.

In 1977, Rubel-Yang [28] proved that if an entire function f shares two dis-
tinct finite complex numbers CM with its derivative f ′, then f = f ′. What is
the relation between f and f ′, if an entire function f shares one finite complex
number a CM with its derivative f ′ ? In 1996, Brück [5] made a conjecture that
if f is a nonconstant entire function satisfying ρ2(f) < ∞, where ρ2(f) is not
a positive integer, and if f and f ′ share one finite complex number a CM, then
f − a = c(f ′ − a) for some constant c ̸= 0. For the case that a = 0, the above con-
jecture had been proved by Brück [5]. Brück [5] also proved the above conjecture
is true, provided that a ̸= 0 and N(r, 1/f ′) = S(r, f), where f is an entire function.
Later on, Gundersen-Yang [11], Chen-Shon [8] proved that the above conjecture is
true, provided that ρ(f) < ∞ and ρ2(f) < 1/2 respectively, where f is an entire
function. In 2005, Al-Khaladi [1] showed that the conjecture remains true for a
nonconstant meromorphic function f such that N(r, 1/f ′) = S(r, f). In this di-
rection, some other research works have been obtained, see, e.g., Al-Khaladi [2, 3],
Banerjee-Bhattacharjee [4], Chang-Zhu[6], Chang-Fang[7], Heittokangas-Korhonen-
Laine-Rieppo-Zhang[13], Lahiri-Sarkar [15], Li-Gao [19, 20], Li-Yi [21-26], Wang
[29], Wang-Laine [30], Wang-Li [31], Xiao-Li [32], Zhang [35], Zhang-Yang [36-37].
But the conjecture remains open by now.

We first recall the following result due to Gundersen and Yang:

Theorem A.([11,Theorem 1]) Let f be a nonconstant entire function of finite
order, and let a ̸= 0 be a finite complex number. If f and f ′ share a CM, then
f ′ − a = c(f − a) for some nonzero constant c.

Wang [29] obtained the following result to improve Theorem A:

Theorem B.([29,Theorem 1]) Let f be a nonconstant entire function of finite order,
let P be a polynomial with degree p ≥ 1, and let k be a positive integer. If f − P
and f (k) − P share 0 CM, then f (k) − P = c(f − P ) for some nonzero constant c.
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One may ask, what can be said about the relationship between a meromorphic
function f and f (k), if f and f (k) share a CM, where f is a nonconstant meromorphic
function of finite order, k ≥ 1 is a positive integer and a ̸= 0 is constant ? In this
direction, we will prove the following result:

Theorem 1.1. Let f be a transcendental meromorphic function of finite order such
that f (m) has finitely many zeros for some m ≥ 2, and let a ̸= 0 be a finite complex
value. If f and f (k) share a CM, then f is a transcendental entire function such
that f (k) − a = c(f − a) for some nonzero constant c.

If we remove the assumption “ f is of finite order” in Theorem 1.1, then we
have the following result by Lemma 2.2 in Section 2 of this paper:

Theorem 1.2. Let f be a transcendental meromorphic function such that f (m) and
f (n) have finitely many zeros for some two distinct nonnegative integers m and n
satisfying 0 ≤ m ≤ n − 2, and let a ̸= 0 be a finite complex value. If f and f (k)

share a CM, where k ≥ 1 is a positive integer, then f is a transcendental entire
function such that f (k) − a = c(f − a) for some complex constant c ̸= 0.

The following example shows that the assumption “ f (m) has finitely many zeros
for some m ≥ 2” in Theorem 1.1 is necessary:

Example 1.1.([11]) Let

f(z) =
2ez + z + 1

ez + 1
.

Then ρ(f) = 1 and

f(z)− 1 =
ez + z

ez + 1
, f ′(z)− 1 = −ez(ez + z)

(ez + 1)2
,

and

f ′′(z) =
[(z − 3)ez − (z + 1)]ez

(ez + 1)3
.

Therefore, f and f ′ share 1 CM such that

f ′(z)− 1

f(z)− 1
= − ez

ez + 1
,

N

(
r,

1

f ′′

)
= 2N

(
r,

1

ez + 1

)
+O(log r) = 2T (r, ez) +O(log r),

which implies that f ′′ has infinitely many zeros in the complex plane, and that the
conclusion of Theorem 1.1 is invalid.

In 1995, Yi-Yang[34] posed the following question.

Question 1.1.([34, p.398]) Let f be a nonconstant meromorphic function, and let
a be a finite nonzero complex constant. If f, f (n) and f (m) share the value a CM,
where n and m (n < m) are distinct positive integers not all even or odd, then can
we get the result f = f (n)?
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Gundersen-Yang [11] proved the following result to deal with Question 1.1:

Theorem C.([11,Theorem 2]) Let f be a nonconstant entire function of finite order,
let a ̸= 0 be a complex number, and let k be a positive integer. If a is shared by f,
f (k) and f (k+1) IM, and shared by f (k) and f (k+1) CM, then f = f ′.

From Theorem 1.1 and Theorem C we can get the following result:

Theorem 1.3. Let f be a transcendental meromorphic function of finite order such
that f (m) has finitely many zeros for some m ≥ 2, and let a ̸= 0 be a finite complex
value. Suppose that 0 is shared by f − a, f (k) − a and f (k+1) − a IM, and shared
by f (k) − a and f (k+1) − a CM, where k ≥ 1 is a positive integer. Then, f is a
transcendental entire function such that f = f ′.

2. Preliminaries

In order to prove our theorems in the present paper, we need the following
preliminary results:

Lemma 2.1.([17,Theorem 1.2]) Suppose that f is meromorphic of finite order in
the plane, and that f (m) has finitely many zeros, for some m ≥ 2. Then f has
finitely many poles.

Lemma 2.2.([18]) Suppose that m ≥ 0 and k ≥ 2, and that f is meromorphic in the
plane such that f (m) and f (m+k) each have finitely many zeros. Then f (m+1)/f (m)

is a rational function. In particular, f has finite order and finitely many poles.

Lemma 2.3.([16, Corollary 2.3.4]) Let f be a transcendental meromorphic function
and k ≥ 1 be an integer. Then m(r, f (k)/f) = O(log(rT (r, f))), outside of a possible
exceptional set E of finite linear measure, and if f is of finite order of growth, then
m(r, f (k)/f) = O(log r).

Let f(z) =
∞∑

n=0
anz

n be an entire function. Next we define by µ(r) =

max{|an|rn : n = 0, 1, 2, · · · } the maximum term of f, and define by ν(r, f) =
max{m : µ(r) = |am|rm} the central index of f (c.f.[14, p. 33-35]).

Lemma 2.4.(Wiman-Valiron,[14, p.187-199]) Let g be a transcendental entire func-
tion, and let 0 < δ < 1/4. Then there exists a set E ⊂ R+ of finite logarithmic
measure, i.e.,

∫
E
dt/t < +∞, such that for all z with |z| = r ̸∈ E and

|g(z)| > M(r, g)ν(r, g)−
1
4+δ,

one has

g(m)(z) =

(
ν(r, g)

z

)m

{1 + o(1)}g(z),

where m ≥ 0 is an integer.
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Lemma 2.5.([27, Corollary 1]) Let f(z) be an entire function of finite order and let

{wn} be an unbounded sequence. Assume that
∞∪

n=1
{z : f(z) = wn} has only k < ∞

distinct limiting directions, then f(z) is a polynomial of degree at most k.

Lemma 2.6.([9, Lemma 2] or [10, Lemma 4]) If f is a transcendental entire function
of hyper order ρ2(f), then

ρ2(f) = lim sup
r→∞

loglogν(r, f)

log r
.

3. Proof of Theorems

Proof of Theorem 1.1. First of all, by the assumption ρ(f) < ∞ and the
assumption that f (m) has finitely many zeros for some m ≥ 2 we have from Lemma
2.1 that f has finite many poles in the complex plane. We consider the following
two cases:

Case 1. Suppose that f is not an entire function. Then, from the assumption
that f − a and f (k) − a share 0 CM we have

(3.1)
f (k) − a

f − a
= h,

where

(3.2) h =
eα1

(z − ω1)k(z − ω2)k · · · (z − ωn−1)k(z − ωn)k
.

Here α1 is an entire function. From (3.1) and (3.2) we have

(3.3) eα1 = (z − ω1)
k(z − ω2)

k · · · (z − ωn−1)
k(z − ωn)

k · f
(k) − a

f − a
.

From (3.3), Lemma 2.3 and the assumption ρ(f) < ∞ we deduce

(3.4) ρ(eα1) ≤ 2T (r, f) +O(log r),

as r → ∞. From (3.4) and Definition 1.1 we have ρ(eα1) ≤ ρ(f) < ∞, which implies
that α1 is a polynomial. From (3.2) we have

(3.5) ρ(eα1) = ρ(h).

Now we let

(3.6) F = P0f,

where P0 is a nonconstant polynomial such that P0 and 1/f share 0 CM. Then, F
is a transcendental entire function. By calculation we get from (3.6) that
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(3.7)
f (k) − a

f − a
=

k∑
j=0

(
k
j

)R
(j)
0

R0
· F (k−j)

F − aP0

F

1− aP0

F

,

where and in what follows,

(3.8) R0 =
1

P0
.

By calculating we get from (3.8) and the definition of P0 that

(3.9)
R′

0

R0
=

m1

z − ω1
+

m2

z − ω2
+ · · ·+ mn

z − ωn
,

where m1, m2, · · · , mn are negative integers. By induction we get from (3.9) that

(3.10)
R

(j)
0

R0
=

{(−1)j−1(j − 1)!
n∑

l=1

ml}(1 + o(1))

zj
,

as |z| −→ ∞, where j is a positive integer satisfying 1 ≤ j ≤ k. Noting that F is a
transcendental entire function, we know from the proposition of the central index
(c.f.[14, p.33-35]) we can see that

(3.11) ν(r, F ) −→ +∞.

Let

(3.12) M(r, F ) = |F (zr)|,

where zr = reiθ(r), θ(r) ∈ [0, 2π) is some nonnegative real number. From (3.12)
and Lemma 2.4 we know that there exists a subset Ej ⊂ (1,∞) of finite logarithmic
measure, i.e.,

∫
Ej

dt
t < ∞, such that for the points zr = reiθ(r), θ(r) ∈ [0, 2π), as

|zr| = r ̸∈ Ej and M(r, F ) = |F (zr)|, we have

(3.13)
F (j)(zr)

F (zr)
=

(
ν(r, F )

zr

)j

{1 + o(1)}.

From (3.7), (3.10)-(3.13) we get

f (k)(zr)− a

f(zr)− a
=

k∑
j=0

(
k
j

)R
(j)
0

R0
· F (k−j)

F − aP0

F

1− aP0

F

∣∣∣∣∣∣∣∣∣
z=zr

=

{ν(r, F )}k{1 + o(1)}+Nn

k−1∑
j=1

(
k
j

) k−1∑
j=1

(−1)j−1(j − 1)!{ν(r, F )}k−j{1 + o(1)}

zkr
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(3.14) =

(
ν(r, F )

zr

)k

{1 + o(1)},

as r ̸∈ ∪k
j=1Ej and r −→ ∞, where Nn =

n∑
l=1

ml.

Next we prove that α1, and so eα1 is a nonzero constant. Indeed, suppose that
α1 is a nonconstant polynomial. Then

(3.15) α1(z) = plz
l + pl−1z

l−1 + · · ·+ p1z + p0,

where pl, pl−1, · · · , p1, p0 are complex numbers and pl = γle
iθl ̸= 0, γl > 0. Given

a positive number ε, we set

(3.16) Tε =
l−1∪
j=0

{z : | arg z − θj | < ε},

where

(3.17) θj =

(
2j

l
+

1

2l

)
π − θl

l
, 0 ≤ j ≤ l − 1.

Next we let wj = f(zrj ), j = 1, 2, · · · . Then {wj} is an unbounded sequence. We
discuss the following two subcases:

Subcase 1.1. Suppose that T are the only l distinct limiting directions of
∞∪
j=1

{z : F (z) = wj}. First of all, from (3.6) we have ρ(F ) = ρ(f) < ∞. This

together with Lemma 2.5 implies that F is a nonconstant polynomial. Combining
this with (3.6), we can see that f is a rational function, which contradicts the
assumption of Theorem 1.1.

Subcase 1.2. Suppose that there exists some sufficiently small positive number
ε0 and there exist some infinite subsequence of the points zrj , say itself such that

(3.18) {zrj} ⊂ C \ Tε0 .

Noting that cos(θl + lθj) = 0 for 0 ≤ j ≤ l − 1, we can deduce from (3.12)-(3.18)
that there exists a positive number δ1(l, ε0) ∈ (0, γl) that depends only upon l and
ε0 such that

(3.19) |Reα1(zrj )| ≥ δ1(l, ε0)r
l
j or |Reα1(zrk)| ≤ −δ1(l, ε0)r

l
j ,

as zrj ∈ C \ Tε0 , rj ̸∈ E and rj −→ ∞. Noting that |zrj | = rj , we have from (3.15),
(3.17) and (3.19) that
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δ1(l, ε0)r
l
j

≤ | log |eα1(zrj )||

≤ log

∣∣∣∣∣ (zrj − ω1)
k(zrj − ω2)

k · · · (zrj − ωn−1)
k(zrj − ωn)

k

zkrj
{ν(rj , F )}k

∣∣∣∣∣+ o(1)

≤ k log ν(rj , F ) + kn log r,

as zrj ∈ C \Tε0 , rj ̸∈ E and rj −→ ∞. From (3.15), (3.20) and Lemma 2.6 we have

(3.21) ρ(eα1) = l ≤ lim sup
r→∞

log log ν(r, f)

log r
= ρ2(f).

Again from the assumption ρ(f) < ∞ and Definition 1.1 we have ρ2(f) = 0. Com-
bining this with (3.15) and (3.21), we have l = deg(α1) = 0, and so α1 is a constant.
Therefore, from (3.1) and (3.2) we have

(3.22)
f (k) − a

f − a
=

c

(z − ω1)k(z − ω2)k · · · (z − ωn−1)k(z − ωn)k
,

where c = eα1 . From (3.17) and (3.22) we have

(3.23)

(
ν(r, F )

zr

)k

{1 + o(1)} =
c

(zr − ω1)k(zr − ω2)k · · · (zr − ωn−1)k(zr − ωn)k
,

as |zr| = r ̸∈ ∪k
j=1Ej and r −→ ∞. From (3.23) we have

(3.24) {ν(r, F )}k ≤
∣∣∣∣ 2zkr
(zr − ω1)k(zr − ω2)k · · · (zr − ωn−1)k(zr − ωn)k

∣∣∣∣ ,
as |zr| = r ̸∈ ∪k

j=1Ej and r −→ ∞. By letting |zr| = r → ∞ and |zr| = r ̸∈ ∪k
j=1Ej

on two sides of (3.24), we have

{ν(r, F )}k < 3,

as |zr| = r ̸∈ ∪k
j=1Ej and r → ∞. This contradicts (3.11).

Case 2. Suppose that f is an entire function. Then,

(3.25)
f (k) − a

f − a
= eα2 ,

where α2 is an entire function. From (3.25) we can see that f is a transcendental
entire function. From (3.25) and Lemma 2.3 we have

(3.26) T (r, eα2) ≤ 2T (r, f) +O(log r),
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as r → ∞. From (3.26) and Definition 1.1 we deduce ρ(eα2) ≤ ρ(f) < ∞, and so
α2 is a polynomial. If α2 is a constant, then the conclusion of Theorem 1.1 is valid.
Next we suppose that α2 is nonconstant polynomial. Then, in the same manner
as in the proof of (3.21) we have ρ(eα2) ≤ ρ2(f) = 0, which implies that α2 is a
constant, this is impossible. This completes the proof of Theorem 1.1.
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