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Abstract. In the present paper, a new analytic function valued integral operator is

introduced which is defined on n-copies of a subset of the class of normalized analytic

functions on the unit disc of the complex plane. This operator, which is denoted here by

Jαi, βi(f1, ..., fn), unifies and generalizes several integral operators studied earlier. Inter-

esting sufficient conditions are derived for the univalent starlikeness of Jαi, βi(f1, ..., fn).

1. Introduction

Let A denote the family of normalized functions of the form:

(1.1) f(z) = z +
∞∑

n=2

anz
n

which are analytic in the open unit disc

U := {z ∈ C : |z| < 1}.

A function f(z) in A is said to be univalent in U if f(z) is one to one in U. As
usual, we denote by S the subclass of A consisting of univalent functions in U [8].
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A function f(z) in A is said to be starlike of order δ (0 ≤ δ < 1) if following is
satisfied:

(1.2) ℜ
(
zf ′(z)

f(z)

)
> δ (z ∈ U).

We denote by S∗(δ) the class of starlike functions of order δ. Clearly, S∗(δ) ⊂
S∗(0) := S∗ (0 < δ < 1) and S∗ ⊂ S [8].
Finding sufficient conditions for univalence of integral, derivative and other oper-
ators is an important topic of research in Geometric Function Theory. In recent
years, several authors have investigated sufficient conditions for the univalence and
starlikeness of various integral operators. For example, Breaz and Breaz [2] studied
the following integral operator.

(1.3) Hα1,...,αn,µ(f1, ...., fn)(z) =

µ ∫ z

0

tµ−1
n∏

j=1

[f ′
j(t)]

αjdt

 1
µ

where the functions fj ∈ A and the parameters αj , µ (j = 1, ...., n) are so con-
strained that the integral (1.3) exists. Deniz et al. [6] derived interesting suf-
ficient conditions for univalence by choosing fj in (1.3) a variety of special func-
tions, namely, generalized Bessel’s functions, modified Bessel functions and spherical
Bessel’s functions and so on. The particular case µ = 1 in (1.3), i.e. the operator

(1.4) Hα1,...,αn,1(f1, ..., fn)(z) := Hαi,n(z) =:

∫ z

0

n∏
j=1

[f ′
j(t)]

αjdt,

has been used as an important auxiliary operator in [6]. In another direction Stanciu
et al. [19] obtained sufficient conditions for univalence for the following integral
operator:

(1.5) Hα,β(f, g)(z) =

[
β

∫ z

0

tβ−α−1(f(t))αg(t)dt

] 1
β

(z ∈ U)

where the parameters α, β and the function f and g are suitably chosen. In this
paper [19], the special case β = 1 i.e. the operator

(1.6) Hα(z) := Hα,1(f, g)(z) =:

∫ z

0

(
f(t)

t

)α

g(t)dt (z ∈ U),

also plays an important role in the proofs of the theorems. The operator

(1.7)

Fβ,n(f1, ..., fn)(z) :=

∫ z

0

n∏
j=1

(
fj(t)

t

)β

dt (fj ∈ A, j = 1, ..., n, z ∈ U, β ≥ 1)
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has been used by Breaz et al. [4] for the determination of univalence criteria for
a related operator. Some more recent studies on this topic can also be found, for
example, in [3],[5],[10],[12],[13],[14],[16],[18].

Now, let the functions f1, ..., fn in A be such that

(1.8)
f ′
i(z)fi(z)

z
̸= 0

for every i = 1, ..., n and z ∈ U. On the subset of such functions in An we introduce
the following integral operator:

(1.9) Jαi, βi(f1, ..., fn)(z) =

∫ z

0

n∏
i=1

(f ′
i(t))

αi

(
fi(t)

t

)βi

dt,

(αi, βi ∈ R+ ∪ {0}, 1 ≤ i ≤ n; z ∈ U).

We observe that the integral in (1.9) is independent of path. Hence, Jαi, βi(f1, ..., fn) ∈
A. The integral operator Jαi, βi(f1, .., fn)(z) unifies and generalizes several previ-
ously studied operators as follows:

• Taking βi = 0 (i = 1, ..., n) in (1.9), we get the integral operator where

(1.10) Hαi,n(z) =

∫ z

0

n∏
i=1

(f ′
i(t))

αi dt

defined at (1.4). Also see Breaz et al. [5].

• The choices αi = 0 (i = 1, ..., n) give the integral operator

(1.11) Fβi,n(z) =

∫ z

0

n∏
i=1

(
fi(t)

t

)βi

dt

introduced and studied by Breaz and Breaz [1]. Furthermore, taking βi =
β (i = 1, ..., n) we get the operator Fβ,n(f1, ..., fn) defined by (1.7).

• For n = 1, α1 = α, β1 = β and f1 = f , our integral operator at (1.9) reduces
to the operator

(1.12) Fα, β(z) =

∫ z

0

(f ′(t))α
(
f(t)

t

)β

dt

which has been studied in [7]. Furthermore, the choice α = 0 gives

(1.13) Fβ(z) =

∫ z

0

(
f(t)

t

)β

dt

studied in [11].
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• Similarly, for n = 1, α1 = α, β1 = 0 and f1 = f , we obtain the integral
operator

(1.14) Gα(z) =

∫ z

0

(f ′(t))
α
dt

studied in [15].

In the present paper, we determine sufficient conditions for the integral operator
defined in (1.9) to be starlike. Our results unify and generalize several previously
studied sufficient conditions for starlikeness.

2. Preliminaries

In order to derive our results, we need the following lemmas.

Lemma 2.1.(see [17]) If f ∈ A satisfies

(2.1) ℜ
{
1 +

zf ′′(z)

f ′(z)

}
<

δ + 1

2(δ − 1)
(z ∈ U)

for some 2 ≤ δ < 3, or

(2.2) ℜ
{
1 +

zf ′′(z)

f ′(z)

}
<

5δ − 1

2(δ + 1)
(z ∈ U)

for some 1 < δ ≤ 2, then f ∈ S∗.

Lemma 2.2.(see [17]) If f ∈ A satisfies

(2.3) ℜ
{
1 +

zf ′′(z)

f ′(z)

}
> − δ + 1

2δ(δ − 1)
(z ∈ U)

for some δ ≤ −1, or

(2.4) ℜ
{
1 +

zf ′′(z)

f ′(z)

}
>

3δ + 1

2δ(δ + 1)
(z ∈ U)

for some δ > 1, then f ∈ S∗
(
δ+1
2δ

)
.

3. Main Results

We shall assume throughout that αi, βi (i = 1, ..., n) are non negative real
numbers and the functions fi ∈ A satisfy the condition (1.8). Also for the sake of
brevity of notation, we shall write I(z) instead of Jαi,βi(f1, f2, ..., fn)(z).

Theorem 3.1. Suppose that for each i = 1, ..., n, the functions fi ∈ A satisfy
anyone of the following conditions:

(3.1) ℜ
(
αi

zf ′′
i (z)

f ′
i(z)

+ βi
zf ′

i(z)

fi(z)

)
< βi +

3− δ

2(δ − 1)n
(z ∈ U)
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for some 2 ≤ δ < 3, or

(3.2) ℜ
(
αi

zf ′′
i (z)

f ′
i(z)

+ βi
zf ′

i(z)

fi(z)

)
< βi +

3(δ − 1)

2(δ + 1)n
(z ∈ U)

for some 1 < δ ≤ 2. Then I(z) ∈ S∗.

Proof. The defining relation (1.9) can be equivalently written as

(3.3) I′(z) =

n∏
i=1

[(
fi(z)

z

)βi

(f ′
i(z))

αi

]
, I(0) = 0.

Therefore,

(3.4) ℜ
(
1 +

zI′′(z)

I′(z)

)
= 1−

n∑
i=1

βi +
n∑

i=1

ℜ
[
αi

zf ′′
i (z)

f ′
i(z)

+ βi
zf ′

i(z)

fi(z)

]
.

Now, by using the given condition (3.1) in (3.4) we have

ℜ
(
1 +

zI′′(z)

I′(z)

)
< 1 +

3− δ

2(δ − 1)
=

δ + 1

2(δ − 1)
(z ∈ U, 2 ≤ δ < 3).

Hence by an application of (2.1) of Lemma 2.1, we get I(z) ∈ S∗. Similarly, by
using the sufficient condition (3.2) in (3.4) and applying (2.2) of Lemma 2.1 we get
I(z) ∈ S∗. Thus, the proof of Theorem 3.1 is completed. 2

Taking αi = 0, i = 1, ..., n in Theorem 3.1, we obtain the following result due
to Frasin et al. [9].

Corollary 3.2.(see [9], Theorem 2.1) Let βi > 0 (i = 1, ..., n). If fi ∈ A (i =
1, ..., n) satisfies

ℜ
(
zf ′

i(z)

fi(z)

)
< 1 +

3− δ

2(δ − 1)nβi
(z ∈ U)

for some 2 ≤ δ < 3, or

ℜ
(
zf ′

i(z)

fi(z)

)
< 1 +

3(δ − 1)

2(δ + 1)nβi
(z ∈ U)

for some 1 < δ ≤ 2, then Fβi,n(z) ∈ S∗ where Fβi,n is defined by (1.11).

Remark 3.3. The particular case βi = β for i = 1, ..., n in our Corollary 3.2 yields
new sufficient conditions of starlikenss for the integral operator Fβ,n(f1, ..., fn)(z)
defined at (1.7). Further, letting n = 1, β1 = β and f1 = f in Corollary 3.2 we
get a result of Frasin et al. ([9], Corollary 2.2). Similarly, taking g(z) ≡ 1 (z ∈ U)
in (1.6) we get new results from our Corollary 3.2 for the operator Fα,1(f, 1)(z)
defined at (1.6).
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Further, putting βi = 0 for all i = 1, ..., n in Theorem 3.1 we get the following
result of [9]:

Corollary 3.4.(see [9], Theorem 3.1) Let αi > 0 (i = 1, ..., n). If fi ∈ A (i =
1, ..., n) satisfies

ℜ
(
zf ′′

i (z)

f ′
i(z)

)
<

3− δ

2(δ − 1)nαi
(z ∈ U)

for some δ (2 ≤ δ < 3), or

ℜ
(
zf ′′

i (z)

f ′
i(z)

)
<

3(δ − 1)

2(δ + 1)nαi
(z ∈ U)

for some δ (1 < δ ≤ 2), then Hαi,n(z) ∈ S∗, where Hαi,n is defined by (1.4).

Remark 3.5. Letting n = 1, α1 = α and f1 = f in Corollary 3.4, we obtain one
more result of Frasin et al. (see [9], Corollary 3.2).

Theorem 3.6. Suppose that for each i (i = 1, ..., n) the functions fi ∈ A satisfy
any one of the following conditions:

(3.5) ℜ
(
αi

zf ′′
i (z)

f ′
i(z)

+ βi
zf ′

i(z)

fi(z)

)
> βi +

δ − 2δ2 − 1

2δ(δ − 1)n
(z ∈ U),

for some δ ≤ −1, or

(3.6) ℜ
(
αi

zf ′′
i (z)

f ′
i(z)

+ βi
zf ′

i(z)

fi(z)

)
> βi +

δ − 2δ2 + 1

2δ(δ + 1)n
(z ∈ U),

for some δ > 1. Then I(z) ∈ S∗
(
δ+1
2δ

)
.

Proof. The proof of the theorem follows the same lines as in Theorem 3.1. In fact,
using (3.5) in (3.4) we obtain

ℜ
(
1 +

zI′′(z)

I′(z)

)
>

−(δ + 1)

2δ(δ − 1)
(z ∈ U, δ < −1).

Also, from (3.4) and (3.6) we get

ℜ
(
1 +

zI′′(z)

I′(z)

)
>

3δ + 1)

2δ(δ + 1)
(z ∈ U, δ > −1).

Therefore, by application of Lemma 2.2 the result follows. The proof of Theorem
3.6 is completed. 2

Taking αi = 0 (i = 1, ..., n) in Theorem 3.6, we get the following result obtained
in [9].

Corollary 3.7.(see [9], Theorem 2.3) Let βi > 0 (i = 1, ..., n). If fi ∈ A (i =
1, ..., n) satisfies

ℜ
(
zf ′

i(z)

fi(z)

)
> 1 +

δ − 2δ2 − 1

2δ(δ − 1)nβi
(z ∈ U)
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for some δ ≤ −1, or

ℜ
(
zf ′

i(z)

fi(z)

)
> 1 +

δ − 2δ2 − 1

2δ(δ + 1)nβi
(z ∈ U)

for some δ > 1, then Fβi,n(z) ∈ S∗
(
δ+1
2δ

)
, where Fβi,n(z) is defined at (1.11).

Remark 3.8. Letting n = 1, β1 = β and f1 = f in Corollary 3.7, we obtain the
result due to Frasin et al. (see [9], Corollary 2.4).

Taking βi = 0 (i = 1, ..., n) in Theorem 3.6, we get the following result.

Corollary 3.9.(see [9], Theorem 3.3) Let αi > 0 (i = 1, ..., n). If fi ∈ A (i =
1, ..., n) satisfies

ℜ
(
zf ′′

i (z)

f ′
i(z)

)
>

δ − 2δ2 − 1

2δ(δ − 1)nαi

for some δ ≤ −1, or

ℜ
(
zf ′′

i (z)

f ′
i(z)

)
>

δ − 2δ2 + 1

2δ(δ + 1)nαi

for some δ > 1, then Hαi,n(z) ∈ S∗( δ+1
2δ ), where Hαi,n(z) is defined at (1.4).

Remark 3.10. Taking n = 1, α1 = α and f1 = f in Corollary 3.9, we obtain the
result of Frasin et al. (see [9], Corollary 3.4).

Theorem 3.11. Let
∑n

i=1 αi = 1. Suppose that for each i = 1, ..., n the functions
fi ∈ A satisfy anyone of the following conditions:

(3.7)
zf ′′

i (z)

f ′
i(z)

<
5− 3δ

4(δ − 1)
and βi

zf ′
i(z)

fi(z)
< βi +

δ + 1

4(δ − 1)n
(z ∈ U)

for some 2 ≤ δ < 3, or

(3.8)
zf ′′

i (z)

f ′
i(z)

<
δ − 5

4(δ + 1)
and βi

zf ′
i(z)

fi(z)
< βi +

5δ − 1

4(δ + 1)n
(z ∈ U)

for some 1 < δ ≤ 2. Then I(z) ∈ S∗.

Proof. We write

(3.9) 1 +
zI′′(z)

I′(z)
=

n∑
i=1

αi

(
1 +

zf ′′
i (z)

f ′
i(z)

)
+

n∑
i=1

βi

(
zf ′

i(z)

fi(z)

)
−

n∑
i=1

βi.

Therefore, using the condition (3.7) in (3.9) we have

ℜ
(
1 +

zI′′(z)

I′(z)

)
<

n∑
i=1

αi

(
δ + 1

4(δ − 1)

)
+

δ + 1

4(δ − 1)
=

δ + 1

2(δ − 1)
(z ∈ U, 2 ≤ δ < 3).
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Similarly, by using (3.8) we get

ℜ
(
1 +

zI′′(z)

I′(z)

)
<

n∑
i=1

αi

(
5δ − 1

4(δ + 1)

)
+

5δ − 1

4(δ + 1)
=

5δ − 1

2(δ + 1)
(z ∈ U, 1 < δ ≤ 2).

Thus, by application of Lemma 2.1, I(z) ∈ S∗. The proof of Theorem 3.11 is
completed.

Theorem 3.12. Let
∑n

i=1 βi = 1. Suppose that for each i = 1, ..., n the functions
fi ∈ A satisfy any one of the following conditions:

(3.10) αi
zf ′′

i (z)

f ′
i(z)

<
δ + 1

4(δ − 1)n
and

zf ′
i(z)

fi(z)
<

δ + 1

4(δ − 1)

for some 2 ≤ δ < 3, or

(3.11) αi
zf ′′

i (z)

f ′
i(z)

<
5δ − 1

4(δ + 1)n
and

zf ′
i(z)

fi(z)
<

5δ − 1

4(δ + 1)
,

for some 1 < δ ≤ 2. Then I(z) ∈ S∗.

Proof. The proof of this theorem is similar to that of Theorem 3.11. In this case,
we have

1 +
zI′′(z)

I′(z)
=

n∑
i=1

[
αi

zf ′′
i (z)

f ′
i(z)

+ βi
zf ′

i(z)

fi(z)

]
(z ∈ U).

Therefore, by using the condition (3.10) or (3.11) and Lemma 2.1 we get that
I(z) ∈ S∗. The proof of Theorem 3.12 is thus, completed.

The next two theorems can be proved in the manner of Theorem 3.11 and
Theorem 3.12 and application of Lemma 2.2. Hence we only state these without
proofs.

Theorem 3.13. Let
∑n

i=1 αi = 1. Suppose that for each i = 1, ..., n the functions
fi ∈ A satisfy anyone of the following conditions:

(3.12)
zf ′′

i (z)

f ′
i(z)

<
3δ − 4δ2 − 1

4δ(δ − 1)
and βi

zf ′
i(z)

fi(z)
< βi −

δ + 1

4δ(δ − 1)n
(z ∈ U)

for some δ < −1, or

(3.13)
zf ′′

i (z)

f ′
i(z)

<
1− δ − 4δ2

4δ(δ + 1)
and βi

zf ′
i(z)

fi(z)
< βi +

3δ + 1

4δ(δ + 1)n

for some δ > 1. Then I(z) ∈ S∗( δ+1
2δ ).

Theorem 3.14. Let
∑n

i=1 βi = 1. Suppose that for each i = 1, ..., n the functions
fi ∈ A satisfy anyone of the following conditions:

(3.14) αi
zf ′′

i (z)

f ′
i(z)

>
−(δ + 1)

4δ(δ + 1)n
and

zf ′
i(z)

fi(z)
<

−(δ + 1)

4δ(δ + 1)
(z ∈ U)
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for some δ < −1, or

(3.15) αi
zf ′′

i (z)

f ′
i(z)

>
3δ + 1)

4δ(δ + 1)n
and

zf ′
i(z)

fi(z)
>

3δ + 1

4δ(δ + 1)
(z ∈ U)

for some δ > 1. Then I(z) ∈ S∗( δ+1
2δ ).
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