Hyers-Ulam Stability of Pompeiu's Point

Jinghao Huang and Yongjin Li*
Department of Mathematics, Sun Yat-Sen University, Guangzhou, 510275 P. R. China
e-mail: hjinghao@mail2.sysu.edu.cn and stslyj@mail.sysu.edu.cn

Abstract. In this paper, we investigate the stability of Pompeiu's points in the sense of Hyers-Ulam.

1. Introduction

In 1946, Pompeiu [8] derived a variant of Lagrange's mean value theorem, now known as Pompeiu's mean value theorem.

Definition 1.1. For every real valued function f differentiable on an interval [a,b] not containing 0 and for all pairs $x_{1} \neq x_{2}$ in $[a, b]$, there exists a point ξ in $\left(x_{1}, x_{2}\right)$ such that

$$
\frac{x_{1} f\left(x_{2}\right)-x_{2} f\left(x_{1}\right)}{x_{1}-x_{2}}=f(\xi)-\xi f^{\prime}(\xi)
$$

Such an intermediate point ξ will be called Pompeiu's point of the function f. The geometric meaning of this is that the tangent at the point $(\xi, f(\xi))$ intersects on the y-axis at the same point as the secant line connecting the points $\left(x_{1}, f\left(x_{1}\right)\right)$ and $\left(x_{2}, f\left(x_{2}\right)\right)$.

In 1954, Hyers and Ulam [4] considered the stability of differential expressions and proved the following theorem, by which many mathematicians have obtained some interesting theorems.

Theorem 1.2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be n-times differentiable in a neighborhood N of the point η. Suppose that $f^{(n)}(\eta)=0$ and $f^{(n)}(x)$ changes sign at η. Then, for all $\varepsilon>0$, there exists a $\delta>0$ such that for each function $h: \mathbb{R} \rightarrow \mathbb{R}$ which is n-times differentiable in N and satisfies $|h(x)-f(x)|<\delta$ in N, there exists a point ξ in N such that $h^{(n)}(\xi)=0$ and $|\xi-\eta|<\varepsilon$.

* Corresponding Author.

Received October 4, 2013; revised October 31, 2013; accepted November 1, 2013.
2010 Mathematics Subject Classification: 34K20, 26D10.
Key words and phrases: Hyers-Ulam stability, Pompeiu's point, Mean value theorem.

Let $[a, b] \subset \mathbb{R}$ be a closed interval and

$$
\phi=\left\{f:[a, b] \rightarrow \mathbb{R} \mid \mathrm{f} \text { is continuously differentiable, } f^{\prime}(a)=f^{\prime}(b)\right\}
$$

In 2003, M. Das, T. Riedel and P. K. Sahoo [1] gave a Hyers-Ulam type stability result for Flett's points.
Theorem 1.3. Let $f \in \phi$ and η be a Flett's point of f in (a,b). Assume that there is a neighborhood N of η in (a, b) such that η is the unique Flett's point of f in N. Then for each $\varepsilon>0$, there exists a $\delta>0$ such that for every $h \in \phi$ satisfying $h(a)=f(a)$ and $|h(x)-f(x)|<\delta$ for all x in N, there exists a point $\xi \in N$ such that ξ is a Flett's point of h and $|\xi-\eta|<\delta$.

Unfortunately, there are some errors in the proof of M. Das et al.. In 2009, W. Lee, $\mathrm{S} . \mathrm{Xu}$ and F . Ye [6] constructed a counter example to show that theorem is incorrect, then they proved the Hyers-Ulam stability of the Sahoo-Riedel's point, and as a corollary they got the correct theorem of the stability of Flett's point.

Theorem 1.4. Let $f, h:[a, b] \rightarrow \mathbb{R}$ be differentiable and η be a Sahoo-Riedel's point of f in (a,b). If f has 2nd derivative at η and

$$
f^{\prime \prime}(\eta)(\eta-a)-2 f^{\prime}(\eta)+\frac{2(f(\eta)-f(a))}{\eta-a} \neq 0
$$

then corresponding to any $\varepsilon>0$ and any neighborhood $N \subset(a, b)$ of η, there exists $a \delta>0$ such that for every h satisfying $|h(x)-h(a)-(f(x)-f(a))|<\delta$ for x in N and $h^{\prime}(b)-h^{\prime}(a)=f^{\prime}(b)-f^{\prime}(a)$, there exists a point $\xi \in N$ such that ξ is a Sahoo-Riedel's point of h and $|\xi-\eta|<\varepsilon$.

In 2010, P. Gǎvruţă, S.-M. Jung and Y. Li [3] investigated the stability of the Lagrange's mean value points.

Theorem 1.5. Let a, b, η be real numbers satisfying $a<\eta<b$. Assume that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a twice continuously differentiable function and η is the unique Lagrange's mean value point of f in an open interval (a, b) and moreover that $f^{\prime \prime}(\eta) \neq 0$. Suppose $g: \mathbb{R} \rightarrow \mathbb{R}$ is a differentiable function. Then, for a given $\varepsilon>0$, there exists a $\eta>0$ such that if $|f(x)-g(x)|<\eta$ for all $x \in[a, b]$, then there is a Lagrange's mean value point $\xi \in(a, b)$ of g with $|\xi-\eta|<\varepsilon$.

In this paper, we prove the Hyers-Ulam stability of Pompeiu's point by employing the ideas of theorem 1.3, 1.4 and 1.5.

2. Hyers-Ulam Stability of Pompeiu's Point

In this section, we investigate the stability of the Pompeiu's point.
Theorem 2.1. Let $f, h:[a, b] \rightarrow \mathbb{R}$ be differentiable and η be a Pompeiu's point of f. If f has 2nd derivative at η with

$$
f^{\prime \prime}(\eta) \neq 0
$$

then corresponding to any $\varepsilon>0$, there exists a $\delta>0$ such that for every h satisfying $|h(t)-f(t)|<\delta$ for all $t \in[a, b]$, there exists a point $\xi \in(a, b)$ such that ξ is a Pompeiu's point of h with $|\xi-\eta|<\varepsilon$.
Proof. Without loss of generality, we shall assume that $a, b>0$. Define a real valued function F on the interval $\left[\frac{1}{b}, \frac{1}{a}\right]$ by

$$
F(t)=t f\left(\frac{1}{t}\right)
$$

Since f is differentiable on $[a, b]$ and 0 is not in $[a, b]$, we see that F is differentiable on ($\frac{1}{b}, \frac{1}{a}$) and

$$
F^{\prime}(t)=f\left(\frac{1}{t}\right)-\frac{1}{t} f^{\prime}\left(\frac{1}{t}\right)
$$

Consider the auxiliary function $G_{F}(t):\left[\frac{1}{b}, \frac{1}{a}\right] \rightarrow \mathbb{R}$ corresponding to F defined by

$$
G_{F}(t)=F(t)-\frac{F\left(\frac{1}{b}\right)-F\left(\frac{1}{a}\right)}{\frac{1}{b}-\frac{1}{a}}\left(t-\frac{1}{a}\right) .
$$

Since η is a Pompeiu's point, we have

$$
G_{F}^{\prime}\left(\frac{1}{\eta}\right)=F^{\prime}\left(\frac{1}{\eta}\right)-\frac{F\left(\frac{1}{b}\right)-F\left(\frac{1}{a}\right)}{\frac{1}{b}-\frac{1}{a}}=f(\eta)-\eta f^{\prime}(\eta)-\frac{a f(b)-b f(a)}{a-b}=0
$$

Moreover, by the assumption that $f^{\prime \prime}(\eta) \neq 0$, we obtain that

$$
G_{F}^{\prime \prime}\left(\frac{1}{\eta}\right)=F^{\prime \prime}\left(\frac{1}{\eta}\right)=\eta^{3} f^{\prime \prime}(\eta) \neq 0
$$

which implies $G_{F}^{\prime}(t)$ changes sign at $\frac{1}{\eta}$.
According to theorem 1.2, for all $\varepsilon>0$, there exists a $\delta>0$ such that for each function $\phi:\left[\frac{1}{b}, \frac{1}{a}\right] \rightarrow \mathbb{R}$ which is differentiable in $\left(\frac{1}{b}, \frac{1}{a}\right)$ and satisfies $\left|\phi(t)-G_{F}(t)\right|<$ $\frac{3 \delta}{a}$ in $\left[\frac{1}{b}, \frac{1}{a}\right]$, there exists a point ξ_{0} in $\left(\frac{1}{b}, \frac{1}{a}\right)$ such that $\phi^{\prime}\left(\xi_{0}\right)=0$ and $\left|\xi_{0}-\frac{1}{\eta}\right|<\frac{1}{b^{2}} \varepsilon$.

Now, let us define differentiable functions H and G_{H} by

$$
H(t)=\operatorname{th}\left(\frac{1}{t}\right)
$$

and

$$
G_{H}(t)=H(t)-\frac{H\left(\frac{1}{b}\right)-H\left(\frac{1}{a}\right)}{\frac{1}{b}-\frac{1}{a}}\left(t-\frac{1}{a}\right)
$$

Recall $F(t)=t f\left(\frac{1}{t}\right)$, we have

$$
|H(t)-F(t)|=\left|t h\left(\frac{1}{t}\right)-t f\left(\frac{1}{t}\right)\right| \leq \frac{1}{a}\left|h\left(\frac{1}{t}\right)-f\left(\frac{1}{t}\right)\right|
$$

for all $t \in\left[\frac{1}{b}, \frac{1}{a}\right]$. On the other hand,

$$
\begin{aligned}
\left|G_{H}(t)-G_{F}(t)\right| & \leq\left|H(t)-\frac{H\left(\frac{1}{b}\right)-H\left(\frac{1}{a}\right)}{\frac{1}{b}-\frac{1}{a}}\left(t-\frac{1}{a}\right)-\left(F(t)-\frac{F\left(\frac{1}{b}\right)-F\left(\frac{1}{a}\right)}{\frac{1}{b}-\frac{1}{a}}\left(t-\frac{1}{a}\right)\right)\right| \\
& \leq|H(t)-F(t)|+\left|\left(t-\frac{1}{a}\right)\left(\frac{H\left(\frac{1}{b}\right)-F\left(\frac{1}{b}\right)}{\frac{1}{b}-\frac{1}{a}}\right)\right|+\left|\left(t-\frac{1}{a}\right)\left(\frac{H\left(\frac{1}{a}\right)-F\left(\frac{1}{a}\right)}{\frac{1}{b}-\frac{1}{a}}\right)\right| \\
& \leq|H(t)-F(t)|+\left|\left(\frac{1}{b}-\frac{1}{a}\right)\left(\frac{H\left(\frac{1}{b}\right)-F\left(\frac{1}{b}\right)}{\frac{1}{b}-\frac{1}{a}}\right)\right|+\left|\left(\frac{1}{b}-\frac{1}{a}\right)\left(\frac{H\left(\frac{1}{a}\right)-F\left(\frac{1}{a}\right)}{\frac{1}{b}-\frac{1}{a}}\right)\right| \\
& \leq|H(t)-F(t)|+\left|H\left(\frac{1}{b}\right)-F\left(\frac{1}{b}\right)\right|+\left|H\left(\frac{1}{a}\right)-F\left(\frac{1}{a}\right)\right|
\end{aligned}
$$

for all $t \in\left[\frac{1}{b}, \frac{1}{a}\right]$. Let $|h(t)-f(t)|<\delta$ for all $t \in[a, b]$, we have $\left|G_{H}(t)-G_{F}(t)\right| \leq \frac{3 \delta}{a}$ for all $t \in\left[\frac{1}{b}, \frac{1}{a}\right]$, which implies that there exists a point ξ_{0} in $\left(\frac{1}{b}, \frac{1}{a}\right)$ such that $G_{H}^{\prime}\left(\xi_{0}\right)=0$ and $\left|\xi_{0}-\frac{1}{\eta}\right| \leq \frac{1}{b^{2}} \varepsilon$.

Define $\xi=\frac{1}{\xi_{0}}$. Recall $G_{H}^{\prime}\left(\xi_{0}\right)=0$, which implies $H^{\prime}\left(\xi_{0}\right)=\frac{H\left(\frac{1}{b}\right)-H\left(\frac{1}{a}\right)}{\frac{1}{b}-\frac{1}{a}}$, we obtain that

$$
h(\xi)-\xi h^{\prime}(\xi)=\frac{\frac{1}{b} h(b)-\frac{1}{a} h(a)}{\frac{1}{b}-\frac{1}{a}}=\frac{a h(b)-b h(a)}{a-b},
$$

from which it follows that ξ is a Pompeiu's point of h. Moreover,

$$
|\xi-\eta|=\left|\frac{1}{\xi_{0}}-\eta\right|=\left|\frac{\xi_{0}-\frac{1}{\eta}}{\xi_{0} \cdot \frac{1}{\eta}}\right| \leq b^{2}\left|\xi_{0}-\frac{1}{\eta}\right| \leq \varepsilon
$$

The proof is completed.
Corollary 2.2. Let $f, h:[a, b] \rightarrow \mathbb{R}$ be differentiable and η be a Pompeiu's point of f. If f has $2 n d$ derivative at η and

$$
f^{\prime \prime}(\eta) \neq 0
$$

then corresponding to any $\varepsilon>0$, there exists a $\delta>0$ such that for every h satisfying $|h(t)-f(t)-c|<\delta$ fort in $[a, b]$, where c is a constant, there exists a point $\xi \in(a, b)$ such that ξ is a Pompeiu's point of h and $|\xi-\eta|<\varepsilon$.

The following counter example shows that Theorem 2.1 will be incorrect if we remove the condition $f^{\prime \prime}(\eta) \neq 0$.
Example 2.3. Let $[a, b]=[1,2]$,

$$
f(x)=0
$$

Then, we can see that $f(x)$ is twice differentiable on $(1,2)$ and $f^{\prime \prime}(x)=0$ for all $x \in(1,2)$. What's more, every $x \in(1,2)$ is a Pompeiu's point of $f(x)$. Let $\eta=\frac{7}{4}$, which is a Pompeiu's point of f.

For sufficiently small $\delta>0$, define

$$
h(x)=\delta\left[4\left(x-\frac{3}{2}\right)^{2}-1\right]
$$

for $x \in[1,2]$. Then, we can know from the geometric meaning of Pompeiu's point that the Pompeiu's point ξ of $h(x)$ is in $\left(1, \frac{3}{2}\right)$, or rather, $\xi=\sqrt{2}$ is the unique Pompeiu's point of h in [1, 2].

Finally, we have

$$
|\xi-\eta|=\left|\sqrt{2}-\frac{7}{4}\right|>\frac{1}{4}
$$

In other words, for all $\delta>0$, there exists a twice differentiable function h satisfying $|f-h|<\delta$, but there is no Pompeiu's point of h in the neighborhood of η which is a Pompeiu's point of f.
Acknowledgements. The authors would like to thank the anonymous referee for his or her suggestions and corrections. This work was supported by the National Natural Science Foundation of China (10871213).

References

[1] M. Das, T. Riedel, P. K. Sahoo, Hyers-Ulam stability of Flett's points, Appl. Math. Lett., 16(3)(2003), 269-271.
[2] T. M. Flett, A mean value theorem, Math. Gaztte, 42(1958), 38-39.
[3] P. Gǎvruţǎ, S.-M. Jung, Y. Li, Hyers-Ulam stability of mean value points, Ann. Funct. Anal., 1(2)(2010), 68-74.
[4] D. H. Hyers, S. M. Ulam, On the stability of differential expressions, Math. Mag., 28(1954), 59-64.
[5] S.-M. Jung, Hyers-Ulam stability of zeros of polynomials, Appl. Math. Lett., 24(2011), 1322-1325.
[6] W. Lee, S. Xu, F. Ye, Hyers-Ulam stability of Sahoo-Riedel's point, Appl. Math. Lett., $22(2009)$ 1649-1652.
[7] Y. Li, L. Hua, Hyers-Ulam stability of a polynomial equation, Banach J. Math. Anal., $\mathbf{3 (2)}$ (2009), 86-90.
[8] P. K. Sahoo, T. Riedel, Mean Value Theorems and Functional Equations, World Scientific, River Edge, NJ, 1998.
[9] S. M. Ulam, A Collection of the Mathematical Problems, Interscience, New York, 1960.

